GOOD'S

FAMILY FLORA:
THE

FAMILY FLORA

AND

MATERIA MEDICA BOTANICA,

CONTAINING THE

BOTANICAL ANALYSIS, NATURAL HISTORY,

AND

Chemical and Medical Properties and Uses

OF

PLANTS:

ILLUSTRATED BY COLORED ENGRAVINGS

OF ORIGINAL DRAWINGS, COPIED FROM NATURE.

BY

PETER P. GOOD,

EDITOR OF AN IMPROVED EDITION OF THE "MEMOIRS OF THE LATE JOHN M.
GOOD, M. D., F. R. S., F. R. S. L., MEM. AM. PHIL. SOC., AND F. L. S.
OF PHILADELPHIA, &C., &C.

Каκανοθητε τὰ κρίνα τὰς αὐξάνει, ὡς κατὶ, ὡς νῆθει λεγῶ ὡς ὑπ' ὧν ἡ Σολομὼν ἐν
παντὶ τῷ δόξῃ αὐτοῦ περιεβαλεῖ ὡς οἷον τούτων.—JESUS THE CHRIST.

VOLUME II.

A NEW EDITION, REVISED AND ENLARGED.

ELIZABETHTOWN, N. J.: PUBLISHED BY THE AUTHOR.
Entered according to Act of Congress, in the Year of our Lord, 1845, by
PETER P. GOOD,
In the Clerk's office of the District Court of the United States, for the District of
Connecticut.
It is by no means the intention of the Author, in this advertisement, merely to puff or extol his Work—but simply to call public attention to it. He only asks that persons examine the several numbers of the Family Flora as they come from the press; and then if they do not acknowledge, and are not convinced, that it contains the choicest and most valuable matter as a "Text Book"—notwithstanding it is also a most acceptable and appropriate "Parlor, or Lady's Book"—and withal the cheapest Periodical extant, not being affected by Age or Fashion, but always new, popular and interesting—he does not ask subscription or patronage; for he maintains that all claims to public favor or support must rest solely upon the real merits of the Work, and unless the Work in this respect maintains itself, and commands success, he would prefer abandoning it altogether. As evidence, however, of the opinions of some of our eminent Professors, who are best able to judge on the subject, he submits the following communications (in addition to those already presented in the first volume,) taken at random from several correspondents, who have favored him with their kind commendations.

He avails himself also of this opportunity, to tender his most hearty welcome to the new subscribers who are continually coming in, and whose letters contain such flattering notices of the Family Flora. There is room for them and their friends, and no effort shall be spared to make the Family Flora more and more worthy of their high encomiums.

From the Eclectic Medical Journal, Cincinnati, Ohio.

Good's Family Flora and Materia Medica Botanica.—We have carefully perused the Family Flora, which the author, P. P. Good, A. M. of Elizabethtown, New Jersey, has had the kindness to forward to our address. This periodical is printed semi-monthly, but distributed to subscribers quarterly; twelve numbers being bound together in pamphlet form. It is devoted to the botanical analysis, and medical properties of both indigenous and foreign medical plants.

Each number is embellished with one very superior drawing of some medical plant, which tends greatly to beautify the work.

For neatness and elegance of style, we know of no pamphlet which exceeds this.

The drawings are colored, and true to the living plant, while the natural history, botanical analysis, and chemical and medical properties, together
CONTENTS—Continued.

Helonias Dioica. Unicorn, Blazing-star, Ague-root, &c., 76
Cassia Fistula. Cassia, Purging-cassia, Pudding-pipe-tree, &c., 77
Panax Quinquefolium. Ginseng, Red-berry, Five fingers, &c., 78
Cimicifuga Racemosa. Black snakeroot, Black cohosh, Squaw-root, 79
Chelone Glabra. Balmony, Snake-head, Shell-flower, &c., 80
Hypericum Perforatum. Common St. John’s-wort, 81
Guaiacum Officinale. Lignum vitae, Guaiacum, 82
Tanacetum Vulgare. Tansy, Common tansy, 83
Nicotiana Tabacum. Tobacco, Virginia tobacco, 84
Rheum Palmatum. Rhubarb, 85
Thea Chinensis. Tea, The tea-plant, 86
Frasera Walteri. American columbo, Indian lettuce, 87
Ceanothus Americanus. New-Jersey tea, 88
Drymis Winteri. Winter’s Bark-tree, 89
Solanum Tuberosum. Common potato, 90
Chelidonium Majus. Common celandine, Pile-wort, Tetter-wort, 91
Colchicum Autumnale. Meadow saffron, Naked lady, 92
Cissampelos Pareira. Velvet leaf, Ice vine, 93
Capparis Spinosa. The Capershrub, Capers 94
Coriandrum Sativum. Coriander, 95
Cocculus Palmatus. The Columba-plant, Columbo, 96

Subscription, $3.00 per annum, in advance.

The Work is printed in large octavo form; and each number contains a beautiful colored Plant, with four pages of Letter-press and is perfect and independent.

Twelve numbers form a PART, published Quarterly in March, June, September and December of each year, and four of these parts make a year.

The Title, Preface, Table of Contents, Glossary, &c., form an extra part to the first volume; (or the Title, Table of Contents and Introduction to the study of Botany form an extra part to the second volume.) These extra parts are each delivered at the close of the respective volumes without additional charge, that the whole may be perfect for binding.

The several PARTS are put up for the convenience of subscribers only, and may be forwarded per mail or otherwise wherever desired.

All communications should be addressed (postage free) to

PETER P. GOOD, Elizabethtown, Essex County, N. J.

The FAMILY FLORA can only be obtained by application as above, (post paid,) with remittance; and which will secure immediate and punctual attention.
VEGETABLE KINGDOM.

Pistils and Stamens visible.

Always united in the same flower.

Adhering among themselves.

Stamens not adhering to the pistil.

Not adhering among themselves.

Number of Stamens: Classes.

1. Always united in the same flower.
2. Pistils and stamens visible.
3. Flowers annual, biennial, or perennial.
4. Flowers alternate or opposite.
5. Flowers and leaves on opposite sides of the stem.
6. Flowers and leaves on the same side of the stem.
7. Flowers and leaves opposite each other.
8. Flowers and leaves alternate.
9. Flowers and leaves all on opposite sides of the same stem.
10. Flowers and leaves all on the same side of the same stem.
11. Flowers and leaves all on opposite sides of the same stem.
12. Flowers and leaves all on the same side of the same stem.
13. Flowers and leaves all on opposite sides of the same stem.
14. Flowers and leaves all on the same side of the same stem.
15. Flowers and leaves all on opposite sides of the same stem.
16. Flowers and leaves all on the same side of the same stem.
17. Flowers and leaves all on opposite sides of the same stem.
18. Flowers and leaves all on the same side of the same stem.
19. Flowers and leaves all on opposite sides of the same stem.
20. Flowers and leaves all on the same side of the same stem.
21. Flowers and leaves all on opposite sides of the same stem.
22. Flowers and leaves all on the same side of the same stem.
23. Flowers and leaves all on opposite sides of the same stem.
24. Flowers and leaves all on the same side of the same stem.
25. Flowers and leaves all on opposite sides of the same stem.
26. Flowers and leaves all on the same side of the same stem.
27. Flowers and leaves all on opposite sides of the same stem.
28. Flowers and leaves all on the same side of the same stem.
29. Flowers and leaves all on opposite sides of the same stem.
30. Flowers and leaves all on the same side of the same stem.
31. Flowers and leaves all on opposite sides of the same stem.
32. Flowers and leaves all on the same side of the same stem.
33. Flowers and leaves all on opposite sides of the same stem.
34. Flowers and leaves all on the same side of the same stem.
35. Flowers and leaves all on opposite sides of the same stem.
36. Flowers and leaves all on the same side of the same stem.
37. Flowers and leaves all on opposite sides of the same stem.
38. Flowers and leaves all on the same side of the same stem.
39. Flowers and leaves all on opposite sides of the same stem.
40. Flowers and leaves all on the same side of the same stem.
41. Flowers and leaves all on opposite sides of the same stem.
42. Flowers and leaves all on the same side of the same stem.
43. Flowers and leaves all on opposite sides of the same stem.
44. Flowers and leaves all on the same side of the same stem.
45. Flowers and leaves all on opposite sides of the same stem.
46. Flowers and leaves all on the same side of the same stem.
47. Flowers and leaves all on opposite sides of the same stem.
48. Flowers and leaves all on the same side of the same stem.
49. Flowers and leaves all on opposite sides of the same stem.
50. Flowers and leaves all on the same side of the same stem.
51. Flowers and leaves all on opposite sides of the same stem.
52. Flowers and leaves all on the same side of the same stem.
53. Flowers and leaves all on opposite sides of the same stem.
54. Flowers and leaves all on the same side of the same stem.
VEGETABLE KINGDOM

pistils and Stamens visible
always united in the same flower.
not adhering among themselves.
Stamens equal among themselves.
less than 20 Stamens

<table>
<thead>
<tr>
<th>Number of Stamens</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>Monandria</td>
</tr>
<tr>
<td>Two</td>
<td>Didandria</td>
</tr>
<tr>
<td>Three</td>
<td>Triandria</td>
</tr>
<tr>
<td>Four</td>
<td>Tetradria</td>
</tr>
<tr>
<td>Five</td>
<td>Pentandria</td>
</tr>
<tr>
<td>Six</td>
<td>Hexandria</td>
</tr>
<tr>
<td>Seven</td>
<td>Heptandria</td>
</tr>
<tr>
<td>Eight</td>
<td>Octandria</td>
</tr>
<tr>
<td>Nine</td>
<td>Nonandria</td>
</tr>
<tr>
<td>Ten</td>
<td>Dodecandria</td>
</tr>
</tbody>
</table>

LINNAEAN CLASSIFICATION.
INTRODUCTION TO THE STUDY OF BOTANY.

GENERAL PRINCIPLES.

1. The term Botany is properly applicable to the whole of the science, which includes the study and investigation of the vegetable kingdom. Hence the examination of the internal structure of Plants, and of the various processes concerned in their growth and reproduction,—the description of which strictly constitutes but a branch of the science of Botany, and may be designated structural and physiological Botany. But by those who have made the study of the vegetable kingdom a means of interesting recreation, rather than a professed object of pursuit, and even by some who have considered themselves scientific botanists, this branch has been entirely overlooked: and the whole attention has been devoted to the other department of the science, which concerns the arrangement or classification of the many thousand species of Plants existing on the surface of the globe, into groups or divisions; each of which includes a number of species, that have certain characters in common, and that differ from those of other groups. The advantages of such a plan in the saving of time and labor are obvious. If all the peculiarities of every species of plant had to be studied and recollected by themselves, it would require a long acquaintance and a retentive memory, to become master of the characters of the numerous species of flowering plants, which our own country produces; and when this number is multiplied by a hundred, which it probably must be to represent the amount of species existing on the entire globe, it is obvious that no single mind could be capacious enough to grasp the vast amount of detail thus accumulated.

COLLECTION AND ARRANGEMENT OF PLANTS.

2. It is the business of the Botanist, therefore, in the first place, to collect plants from all sources open to him; and he then arranges them according to their species. Thus, we will suppose that he has collected all the plants of the Northern United States, and that he has obtained a
INTRODUCTION.

A corresponding series of plants of the Southern United States. Upon bringing them together, he would find that many species are common to the two places; but that some are peculiar to the Northern United States, others to the Southern United States. If he obtained, in addition a collection of South American plants, he would find that some of the species common to the Northern and Southern United States, are contained in it also; and that some species not known in the Northern United States are common to the Southern United States and South America; but he will find many peculiar to South America. Proceeding thus over the whole world, he would gradually increase his number of new species; at the same time adding considerably to the number of specimens of some which he would find very extensively diffused. He would find a few similar species almost every where,—these being the kinds most capable of adapting themselves to varieties in soil, climate, &c.; whilst on the other hand, he would find many of a very limited distribution,—being restricted to some small extent of country, in which alone they can find the conditions necessary for their growth.'

DISTINCTION BETWEEN SPECIES AND VARIETIES.

3. The greatest difficulty in this part of the investigation consists in the discrimination of species really distinct,—that is to say, of races which have maintained their distinctive peculiarities, so constantly, that they must be considered as having had originally different stocks,—from those varieties, which may often present differences really greater in amount than those which exist between many undoubtedly distinct species, but which all sprung from the same original stock. Thus, for example, a collection of plants from different parts of India, would contain many specimens presenting such marked differences that the inexperienced Botanist would not hesitate to set them down as distinct species; yet to one who has carefully examined the subject, and has made himself acquainted with the variations produced by the differences in soil and climate, so striking in this extensive tract, it becomes apparent that they are all members of the same. There is, too, in many species a remarkable tendency to run into spontaneous variations, for which no external influences will account. Thus the seeds of the same individual of the beautiful Fuchsia, now naturalized in our green-houses, and in the open air of the milder parts of the Northern United States, have been known to produce plants, whose flowers differ so much in shape and in the proportional length of the calyx and corolla, that if these had been collected and compared without the knowledge that they had been produced from one plant, they would have been regarded as distinct species, perhaps even (so striking is the difference) as distinct genera. Nearly the same is the case with another South American Plant, now
much cultivated in the Northern United States,—the Calceolaria, or slipper-shaped flower; of which an immense number of varieties, differing widely in the shape, as well as the color of the flower, are now known, almost every horticultural exhibition having a new one; and the beautiful South American Amaryllis has a like tendency, of which the gardener has taken similar advantage.

4. Hence in discriminating what are real species from what are simply varieties, the Botanist is treading on very insecure ground, until he has ascertained, for every species, its tendency to run into varieties of form, whether spontaneous or induced by change of external conditions. His greatest difficulty arises from those cases, in which have arisen what are termed permanent varieties, which reproduce themselves with the same regularity as do real species. An instance of this in the animal kingdom is that of the different races of men, which are respectively distinguished by marked peculiarities, that are regularly repeated through each generation; so that many naturalists have been inclined to regard them as really distinct species. There is, however, good evidence (independently of the Mosaic History,) to prove that they have all descended from a common stock. Precisely the same is the case in regard to Plants, many races of which even in the Northern United States, are still under discussion amongst Botanists; some maintaining that they are distinct species, and others that they are but varieties. Thus of the Willow, seventy-one species have been stated by one authority to exist, whilst another reduces them to twenty-nine. The genus Rubus or common Bramble, has been thought to contain twenty-one species, which are probably reducible to six or eight. These details are here introduced for the purpose of putting the young Botanist on his guard against the tendency to multiply species, which is now sadly prevalent among many superficial writers, and which is still further encouraged by gardeners, who give new specific names to such varieties as those just alluded to, and even to hybrids between these.

COMBINATION OF SPECIES INTO GENERA.

5. When the Botanist has satisfied himself regarding the species which he has collected, his next step is to combine those amongst which he finds the greatest resemblance, into genera. Now in this process he must not be altogether influenced by similarity in their general external aspect, for this will often conceal great differences in their most important organs. There are certain parts which furnish essential characters, without similarity in which it would be wrong to associate species, however alike in other respects, in the same genus; and, on the other hand, there are parts so susceptible of variation, that the differences between them must be very striking indeed, to warrant the plants being arranged under
different genera, when they agree in what have been termed the essential characters. Thus, for instance, the general outline of the leaf has been stated to be often subject to great variety, in accordance with the degree in which the space between the veins is filled up with fleshy parenchyma; and in most cases, a difference in the outline of the leaves of two plants, the distribution of the veins remaining the same, would not alone serve to cause two plants exhibiting it to rank even as distinct species. But any considerable alteration of the veining would be held sufficient for such a separation; though the two plants, if agreeing in the structure of their organs of fructification, would still be placed in the same genus. On the other hand, a marked and constant difference in the organs of fructification would be rightly held sufficient to place the two species in different genera, even though the form and veining of the leaves might be precisely the same. On the relative value of the characters furnished by the different organs, more will hereafter be stated.

FORMATION OF ORDERS AND CLASSES.

6. Even when thus grouped together into genera, however, the number of objects, which the Botanist has to study, remains by far too great for convenience; and he next forms his genera into *orders*, and combines these orders into *classes*, according to their respective correspondence and difference in certain characters of a still more general nature. Now in this process he may follow two very different plans; and upon these are founded the two systems of classification which are now in vogue. One of these is termed the Linnaean system, after its founder; or the Artificial system, from its character; the other is termed the Natural system. In the Linnaean system, a small number of characters—chiefly the number of stamens and pistils—is taken as the standard; and the whole vegetable kingdom is distributed under classes and orders, according to the correspondences and differences among the several genera in these respects,—no regard whatever being had to any other characters. In the Natural system, *all* the characters of the genera are studied; and those are united into orders, which present the greatest correspondence in the characters that are regarded as of the most importance: on the same principle, the orders are united into classes. If the former plan be followed, genera most widely differing in their structure and physiological characters are often brought together, and others which are nearly allied are frequently separated to a great extent, so that in fact, it is very common to find, that nothing can be stated as true of all the plants included in a Linnaean order, except that they have a similar number of stamens and pistils. On the other hand, in the Natural system, the number of characters in which there is a general agreement among all the plants of a particular
INTRODUCTION.

order, is so great that, to say that the plant belongs to a certain order, is at once to give the greater part of its description. This is the case also in the highest or most general groups. For instance, to say that a particular species is an Exogen, is at once to make known the structure of its stem, and the mode of its increase,—to express the important fact that it has two cotyledons or seed-leaves,—to render it most probable that the arrangement of the veins in its leaves is reticulated rather than parallel,—and to intimate that the parts of its flowers are likely to be arranged in fives or fours, rather than in threes.

CONNEXION OF STRUCTURE AND PROPERTIES.

7. There is a point of agreement among the plants brought together in Natural orders, which is of the greatest practical importance. This is that those which agree in structure almost invariably correspond in properties also. For instance, the whole of the Papaveraceae or Poppy tribe possesses narcotic properties; all the Rannuculaceae or Crowfoot tribe are acrid; whilst all the Malvaceae or Mallow tribe are destitute of unwholesome properties. Thus, when a plant is recognized as a member of a particular Natural order, an almost certain account may be given of its properties,—whether it is likely to be injurious or wholesome, to furnish valuable medicines or important articles of food. It must be remembered, however, that the peculiar properties of the plant do not pervade every portion of it; and that it may hence be possible to obtain wholesome nutriment, even from members of orders most distinguished for their deleterious properties. Thus the Potato belongs to the order Solanaceae, which contains the Deadly nightshades, Henbane, and other poisonous plants, but the edible part of it, which is a deposition of starch for an express purpose, is free or nearly so, from the narcotic properties which exist in the stems and leaves. Indeed as a general rule, such depositions of starch may supply wholesome food in any order, more especially if care be taken to free them from any juices they may contain: thus the Cassava which furnishes one of the most important articles of food to the inhabitants of many tropical countries, is obtained from a plant of the order Euphorbiaceae or spurge tribe, which is distinguished for its very acrid qualities: and these are restricted to the juice expressed from the meal after it has been ground.

USE OF THE LINNAEAN SYSTEM.

8. The Linnaean system, however, is not without its advantages, for particular purposes. To a person commencing by himself the study of Systematic Botany, desirous of making himself acquainted with the names and characters of the plants he may meet with in his walks, and not ambitious of extending his studies to the higher parts of the science, the
Linnaean system, when applied with the aid of books, possesses facilities which are (at present at least) greatly superior to those afforded by the other, and which are well calculated to encourage a learner. To count the number of stamens and pistils is generally a very easy process; this at once establishes the class and order; and nothing then remains but to determine the genus and species, which (among the number found in the Northern United States) a little practice in the examination of characters will enable any intelligent person to do with the aid of books in which these are laid down. The habit thus gained of discriminating characters, and of applying terms, is a most valuable preparation for the study of the Natural system, when opportunity presents itself. It must be constantly borne in mind, however, that the utmost use which can be made of the Linnaean system, consists in the assistance it affords in the discovery of the name of an unknown plant, and until this has been made out, the previous determination of its class and order gives no indication of its general structure and properties, (not even making it apparent whether it is an Endogen or an Exogen, a Dicotyledon or a Monocoty- ledon,) since under the same head are grouped genera of the most opposite character. It may be said that it serves a sort of alphabetical index to a book, enabling the reader to turn to any part of it he wishes, by looking out the subject in the order of its first letters, but giving no idea whatever of the general scope of the book, nor of the mode in which its subjects are arranged.

IMPERFECTIONS OF THE LINNAEAN SYSTEM.

9. The Linnaean system is liable to many imperfections and difficulties in its application, even in the limited circle of the plants of the United States; for example, the number of pistils is liable to be altered in any species by the more or less complete adhesion of the carpels; and that of the stamens may also vary in the different species of the same genus, and even among the individuals of the same species, or even (in some instances) among the different flowers of the same stem. The adoption of characters thus liable to vary cannot, therefore, but sometimes lead to confusion. For instance, of the genus Polygonum, of which several species are known by the name of Bistort, Buckwheat, Persicaria, &c., one has always, and two others have occasionally eight stamens, whilst in the rest the number varies from five to ten. As eight seems to be the most regular number, the genus is placed in the class Octandria: and although its styles are sometimes only two in number, it is placed in the order Trigynia, because they are more commonly triple. Now if a student meet with a specimen which has five, six, or ten stamens, he will vainly search for its character among the genera of the Linnaean class to which it would seem to belong: and unless he
INTRODUCTION.

15 happen to consult a book which makes special mention of the genus in these several classes, he will be altogether at fault. Suppose that some more knowing Botanist tells him that his plant is a Polygonum, he will again turn to his book, wondering how he could have overlooked it; but he will find the genus in the class Octandria, in spite of the different number of stamens in the specimen before him, and he will then learn that it is placed in the genus Polygonum on account of its strong general resemblance to other Polygonums, although differing from them in characters which are ordinarily considered as sufficient to establish classes and orders. Again, the greater part of the species of the genus *Rhamnus* (buckthorn) possesses both stamens and pistils in the same flower; but the species most generally known in this country on account of its purgative properties is *Dioecious*, the staminiferous flowers being on one plant, and the pistiliferous on another. The student who meets with it therefore would seek for it in the class *Dioecia*, where he would be disappointed as before; since, as in most species of flowers are complete, it is placed in the class and order to which the number of its stamens and pistils would refer it.

10. Such exceptional cases occur much more frequently than is commonly supposed. It has been proved that in fourteen divisions of the Linnaean system, there are no less than forty three exceptions,—one quarter of the whole; and that out of two hundred and seventy four genera of the Northern United States, belonging to eighteen Linnaean sections, there are seventy eight exceptions,—rather more than a quarter. These facts are important, both as preparing the student to meet with such difficulties, even in the study of the Linnaean system, which is generally considered so easy of application; and also as showing the imperfection of the system itself, which is of no importance whatever beyond the temporary purpose of facilitating the early studies of the Botanical student. In well arranged descriptions of American plants (such as Wood’s Class book of Botany, which may be strongly recommended for this purpose) the most perplexing of these cases are noticed, in such a manner as to prevent the loss of time and labor, in vain attempts at discovering genera in wrong classes or species in wrong genera.

PRINCIPLES OF THE LINNAEAN SYSTEM.

11. In consequence of the advantages of the Linnaean system for a beginner, it is desirable to give an outline of the principles upon which its divisions are founded, which may serve as an introduction to the regular systematic treatises upon the subject. The Phanerogamia or flowering plants are distributed under twenty-three classes, all of which are characterised either by the *number* or particular arrangement of the stamens. In the first twelve of these, *number* alone is re-
INTRODUCTION.

CHARACTERS OF THE LINNÆAN CLASSES.

12. These classes, therefore, stand simply as shown in the figures represented in the two plates prefixed to these volumes, and to which reference is here particularly made.

Class I. Monandria. One stamen. Orders Monogynia and Digynia.

Class II. Diandria. Two stamens. Orders Monogynia, Digynia and Trigynia.

Class III. Triandria. Three stamens. Orders Monogynia, Digynia and Trigynia.

Class IV. Tetrandria. Four stamens. Orders Monogynia, Digynia and Tetracygnia.

Class V. Pentandria. Five stamens. Orders Monogynia, Digynia, Trigynia, Tetracygnia, Pentagynia and Polygynia.

Class VI. Hexandria. Six stamens. Orders Monogynia, Digynia, Trigynia and Polygynia.

Class VII. Heptandria. Seven stamens. Orders Monogynia, Digynia, Tetracygnia and Heptacygnia.

Class VIII. Octandria. Eight stamens. Orders Monogynia, Digynia, Trigynia and Tetracygnia.

Class IX. Enneandria. Nine stamens. Orders Monogynia, Trigynia and Hexagynia.

Class X. Decandria. Ten stamens. Orders Monogynia, Digynia, Trigynia, Pentagynia and Decagynia.

Class XI. Dodecandria. Twelve to nineteen stamens. Orders Monogynia, Digynia, Trigynia, Tetracygnia, Pentagynia, Hexagynia and Dodecagynia.

Class XII. Icosandria. Twenty or more stamens inserted into the calyx. Orders Monogynia, Di-Pentagynia and Polygynia.

13. To the last mentioned Class, however, another character belongs; for in the next Class, Polyandria, the number of stamens is also twenty or more. They are distinguished by the mode of insertion of the stamens, these appearing to arise from the calyx in the former, and from the disk or receptacle in the latter. This distinction which will hereafter be shown to be important in the Natural system, will be at once understood by comparing a true Rose, Plum, Cherry, or Pear blossom, with a Christmas rose, an Anemone, or a Pæony; when the calyx and carolla of the former are pulled off, they carry the stamens with them;
but they may be entirely removed from the latter, leaving the stamens attached to the disk. These two classes will therefore, appear as in the plate.

CLASS XIII. POLYANDRIA. Twenty stamens or more inserted into the receptacle. Orders Monogynia, Digynia, Trigynia, TetracygniA, Pentagynia, and Polygynia.

11. The next two classes are characterized by peculiarities in the proportional length of the stamens, as well as in their number. Those which are longer than the rest are said to be in power; and the termination *dynamia* is applied to the number of these, in order to designate their peculiarity.

CLASS XIV. DIDYNAMIA. Four stamens, two longer than the others. Orders Gymnospermia and Angiospermia.

CLASS XV. TETRADYNAMIA. Six stamens, four longer than the others. Orders Siliquosa, Siliculosa.

15. The three following classes are characterized by the more or less complete Union of the filaments of the stamens into bundles or brother-hoods; on account of which the termination *adelphia* is applied to the number of such bundles.

CLASS XVI. MONADELPHIA. Stamens united into a single bundle forming a tube which surrounds the style. Orders Triandria, Pentandria, Hexandria, Heptandria, Octandria, Decandria, Dodecandria, and Polyandria.

CLASS XVII. DIADELPHIA. Stamens united into two bundles. Orders Pentandria, Hexandria, Octandria, and Decandria.

CLASS XVIII. POLYADELPHIA. Stamens united into several bundles. Orders Decandria and Polyandria.

16. In the next class, it is the anthers which form the tube; and the name applied to it, signifies a growth together. In the succeeding class, the stamens and pistil grow together; and the name *gynandria* refers to this union of the male organs with the female, the latter being designated by the first syllable, which will presently be seen to be much employed in the description of the orders.

CLASS XIX. SYNGENESIA. Stamens united by their anthers into a tube. Orders Equalis, Superflua, Frustranea, and Necessaria.

CLASS XX. GY NANDRIA. Stamens and pistils grown together. Orders Monandria, Diandria, and Hexandria.

17. The three remaining classes are characterized by the separation of the staminiferous and pistilliferous flowers. The import of the name *Monœcia* is single-housed, and of Dianœia double-housed.

CLASS XXI. MONŒCIA. Stamens and pistils on separate flowers, but both growing on the same plant. Orders Monandria, Diandria, Triandria, Tetrandria, Pentandria, Hexandria, Octandria, Icosandria, Polyandria, and Monadelphia.
INTRODUCTION.

Class XXII. Dicecia. Stamens and pistils not only on two flowers, but these flowers on two different plants. Orders Monandria, Diandria, Triandria, Tetrandria, Pentandria, Hexandria, Octandria, Enneandria, Decandria, Dodecandria, Icosandria, Polyandria, and Monadelphia.

Class XXIII. Polygamia. Stamens and pistils separated in some flowers, united in others, either on the same plant or on two or three different ones. Orders Monoeia and Diceia.

CHARACTERS OF LINNÆAN ORDERS.

18. The Orders or sub-divisions of the classes are generally founded upon the number of the styles or (if these be not present) of the stigmas; or upon certain peculiarities of the seed-vessel. In the first thirteen classes the number alone is regarded; and the orders are designated as before, by the Greek numerals, with the termination gynia which refers to the supposed female character of the pistil.

Order 1. Monogynia, One style.
2. Digynia, Two styles.
3. Trigynia, Three styles.
4. Tetragnynia, Four styles.
5. Pentagnynia, Five styles.
6. Hexagynia, Six styles.
7. Heptagnynia, Seven styles.
8. Octogynia, Eight styles.
10. Decagynia, Ten styles.
11. Dodecagynia, Twelve styles.

19. It will be evident from the description of the structure of the pistil, that the number of styles affords no indication of the character of the ovary. Thus, the ovary may be formed of many carpels, the divisions between which remain as distinct partitions, whilst the styles and stigmata of all these may have coalesced into one pillar; so that we may have a single style with a many-celled seed-vessel. On the other hand, the walls of the carpels may form but incomplete partitions, so that the cavity of the ovary is undivided; whilst the styles and stigmata may be numerous. The structure of the ovary itself is however a much less variable character than the number of styles, which is liable to alteration in many species (like that of the stamens) through the adhesion or the non-development of some of them. In the class Didynamia, the characters of the orders are drawn from the structure of the seed-vessel. The first Gymnospermia, or naked-seeded, includes those...
in which the ovary has four carpels, each enclosing a single seed; and this, when mature fills up the cavity in such a manner, that the wall of the seed-vessel appears like an outer coat to the seeds, which thus do not seem to have any other envelope. The only true naked-seeded plants are the Coniferæ or Pine tribe and its allies, in which the seeds never are enclosed in a seed-vessel. The second Order Angiospernia, includes those Didynamia which have a distinct seed-capslse, usually two celled, each cavity containing many seeds. In the next class, Tetradynamia, there are also two orders, distinguished by the form of their pod-like seed-vessel; the first Siliquose, having a long pod; the second Siliculose a short one. The Orders of the classes Monadelphia, Diadelphia, Polyadelphia, depend upon the number of their stamens, and they have the same names as the first thirteen classes; the number of stamens, however, being never less than five. The sub-division of the class Syngenesia (as now understood) is rather complex; and it is nearly the same in the Natural system. The Orders of the classes Gynandra, Monoea, and Dioecia, are distinguished by the number of stamens and are consequently Monandria, Pentandria, &c. Those of the class Polygama are the Monoea, in which the same plant bears staminiferous, pistilline, and complete flowers, and the Dioecia in which these occur on different individuals.

NATURAL GROUPS IN THE LINNÆAN SYSTEM.

20. There are many of these orders which form groups truly natural; that is, which consist of genera having a large number of points of agreement with each other, independently of the characters in which the sub-division is founded. For example, one portion of the class Pentandria, order Digynia corresponds with the Natural order Umbellifera, (including the parsley, carrot, hemlock, parsnip, &c.;) the class Triandria, order Digynia, very nearly corresponds with the natural group of grasses, all these having three stamens and two styles, which combination is not found in any other plants. The Didynamia, Gymnospernia, again are the same with the Natural order Labiateæ, to which belong the various kinds of mint, thyme, dead-nettle, &c.; and the class Tetradynamia corresponds with the Natural order Cruciferae, to which belong the mustard, cress, cabbage, turnip, stock, wall-flower, &c. From the predominance of the number three and its multiples in the parts of the flower of Endogens, we find most of this group included in the classes Triandria, Hexandria, and Exoendria; whilst the prevalence of the numbers four and five among Exogens causes the classes Tetrandria and Pentandria, Octandria and Decandria, with Icosandria and Polyandria, to contain a very large proportion of that division. But the Linnæan system often brings together Exogens and
Endogens into close contact; besides breaking up the natural alliances of each, so as to scatter widely apart the members of groups nearly united.

IDEA OF NATURAL ARRANGEMENT.

21. The Natural system, on the other hand aims to present an harmonious and consistent view of the vegetable kingdom, by associating into orders those genera which agree in the most numerous and important characters, and which differ from others in the same. A table of the characters of these orders would therefore resemble the table of contents of a well-arranged book: giving at one glance to a person at all acquainted with the subject, an idea of the mode in which it is treated by the author, and of the relations which the several divisions of it had in his mind; and enabling a person who is entering upon the study of it, to do so with the knowledge that he is not gleaning at random, as if he were reading through a Dictionary, but that every acquisition he makes of an individual part, is something toward an acquaintance with the plan of the whole. One more illustration may set this matter in a still clearer light. The reader may be requested to consider this series of treatises as completed according to the original plan; and as consisting of a number of volumes, each devoted to some particular science, but all having a certain degree of connexion with each other. Each volume consists of a series of chapters, in which the sub-divisions of these sciences are respectively treated of, and among which there is a still closer degree of connexion. Every chapter again, is made up of a number of paragraphs, each intended to contain one or more important facts, the knowledge of which is in itself useful, but which can only be fully understood when read continuously with the preceding and following paragraphs. We shall further suppose that the subject of every paragraph could be concisely expressed by a single word. Now we will imagine these paragraphs all printed on separate slips of paper, with their appropriate titles to be given to a man of science, with a request that he would arrange them for publication. His first idea might perhaps be, to place them in alphabetical order, so as to form a kind of Dictionary; this being the most easy method of fulfilling his task, and also having the advantage when complete, of admitting very easy reference to any required subject. But what idea would the reader of such a volume gain of the plan which the original author had in his mind? Or what connected and harmonious scheme of knowledge could he frame from them, unless he digested and arranged them in his own mind, in the manner in which we shall suppose our man of science to proceed to do? He might commence in two ways:—either by separating the whole into heaps, according to the subjects to which they respectively refer, e. g. Mechanics, Chemistry, Geology, Botany,
Zoology, &c., and then arranging these singly; or by endeavoring to join the separate paragraphs together, according to their obvious connection. He will probably find a combination of these two methods the most advantageous; and by a careful examination of each single paragraph in its relations to the whole, he may at last succeed in producing a series of connected treatises, methodically arranged according to their respective subjects, and regularly divided into chapters very nearly or even exactly upon the plan of the original author. Now the alphabetical arrangement would bear a close parallel with the Linnaean system of Botanical classification; whilst the latter distribution,—the one evidently most calculated to convey to the learner a connected rather than a desultory knowledge of the several objects of his pursuit may not unaptly represent the Natural system.

VALUE OF A NATURAL SYSTEM.

22. It is by seeking for the latter only, that any of those general principles can ever be attained, which give their chief value to the facts of science, and which lead us higher and higher in the contemplation of that almighty Power and boundless Wisdom by which the Universe was framed; for the Natural system would be but a table of contents of the vegetable Kingdom, arranged on the plan of its divine Author. In order to attain it, the Botanist requires to become acquainted, not only with all the tribes of vegetables at present existing on the surface of the globe, but with the forms and characters of those which have once existed, since—it cannot be doubted—all these constituted parts of the one general scheme, without the knowledge of which it would be impossible to reconstruct it. Now it is well known to the Botanist, that a very large number of the species of plants with which he is somewhat acquainted, have been so imperfectly examined and described, that their true place in the system cannot be determined; and there is good reason to believe that there are many more of which he is totally ignorant. Here therefore are abundant causes for the imperfection of any natural system which can be at present framed; and should these ever be removed by long continued labor and research, there will yet remain the other causes resulting from the impossibility of becoming fully acquainted with the characters of the races which have existed in former periods of the earth's history, and which have been swept completely from its face. Of these, some remains are occasionally discovered, sufficiently perfect to excite the liveliest interest and curiosity, by showing that races once flourished which fill up many of the wide gaps existing between those with whose characters we are now familiar, and which if we knew more of them, would explain many things that are at present most perplexing.
LINNÆAN NATURAL SYSTEM.

23. Some of the strongest upholders of the Linnaean system are influenced by their veneration for its Author; whose fame, however will rest on a foundation much more durable than this. It is not generally known that the advantages of the Natural method have never been more highly appreciated than they were by Linnaeus himself. When he framed an artificial system for the convenient arrangement of plants, it was with the very purpose for which the temporary employment of it has been now recommended,—namely to facilitate that acquaintance with the vegetable Kingdom, which must be gained before a Natural method can be framed. Linnaeus himself gave a sketch of the Natural system, explaining the principles upon which it might be expected to rest, and he pronounced the investigation of the natural affinities to be the great object of his studies, and the most important part of the science. He considered the artificial system as a temporary expedient which however necessary at that day, would inevitably give place to the system of nature, so soon as its fundamental principles should be discovered. The elucidation of the latter, he said is the first and ultimate aim of Botanists; to this end the labor of the greatest Botanists should be diligently directed; and the merest fragments of this system should be carefully studied. Though not then fully discovered, he spoke of the pursuit of it as held in high estimation by the wisest Botanists, and as being little encouraged by the less learned. "For a long time," he adds, "I have labored to establish it; I have made many discoveries, but have not been able to perfect it; yet while I live I shall continue to labor for its completion. In the mean time I have published what I have been able to discover; and whosoever shall resolve the few plants which still remain shall be my Magnus Apollo. Those are the greatest Botanists who are able to correct, augment, and perfect this method: which those who are unqualified should not attempt." Those therefore who priding themselves upon their being disciples of Linnaeus continue to employ his temporary and artificial system of classification, to the exclusion of one founded upon Natural principles, imagining that they are upheld by his authority, quite mistake the views of their great master, and sadly misrepresent his opinions.

24. The knowledge of the vegetable kingdom obtained by Linnaeus, however, was far too small in amount, to enable him to frame a Natural system upon sound principles. The number of species known to him was probably not an eighth part of those with which Botanists are now acquainted; and no arrangement, therefore, could be formed, which was not marked by many wide and unsightly gaps. Further, so little was at that time known of the internal arrangement of the organs of plants, that even the distinction between the two principal forms of structure in the stem,—evident and well marked as it now appears,—was
not then understood. Nevertheless, with that sagacity which so remarkably characterized him, Linnaeus succeeded in grouping together genera into orders, which are even now regarded as, for the most part, very natural assemblages; that is, as containing plants really allied to each other in their most important characters, and differing from those of other orders in the same. But of the best mode of arranging these orders he was necessarily ignorant, since the most important characters were not then understood. The great progress which has been made since his time, in the structural and physiological departments of Botanical science, has done much to place classification on a more certain basis; yet there is still much wanting before Botanists shall be generally agreed on the principles which shall regulate the division and subdivision of the vegetable kingdom. In the following outline, it has been deemed advisable to adopt the classification of De Candolle, being the one which is most in use at the present time; and the principles upon which it is founded will therefore now be explained.

PRINCIPLES OF NATURAL ARRANGEMENT.

25. It may be remarked, however, in the first place, as a principle common to all systems of classification which profess to be natural, that the different values which are attached to the various characters furnished by the several organs of plants should be estimated by the degree in which they respectively indicate important similarities or differences of general conformation. It often happens that attention to one or two characters may afford a considerable amount of knowledge of the whole; because those characters are found to be inseparably connected with others. An instance of this has been already given in regard to the primary division between Exogens and Endogens ($§$ 6); and it may be useful to illustrate it further by reference to the animal kingdom. If, for example, we meet with an animal covered with feathers, we at once know a great deal of its internal structure and economy. It is a vertebrated animal, possessing a jointed back bone and complete internal skeleton: it has all five senses, its blood is red, it breathes air, its temperature is high, its young are produced from eggs, it walks upon two legs, &c. Here we are at once informed that this unknown animal possesses all the characters peculiar to the class of birds; since no other animals than birds possess a covering of feathers, which is inseparably connected with the whole plan of their structure and economy. In the same manner the classification of the Mammalia, (Quadrupeds) according to their teeth, proposed by Linnaeus, proves to be a very natural one, although founded upon a single set of characters; because the form and number of the teeth vary with the nature of the food on which the animal is intended to live; and to make
use of this, a certain form of digestive apparatus is adapted; as well as a certain kind of general structure, furnishing the instruments by which the food is obtained: so that these may be known to a great extent from the inspection of the teeth alone. In like manner, the Botanist, whilst founding his arrangement upon the whole group of characters which each plant exhibits, endeavors to select those, as marks for distinguishing the several divisions, which are at once easily recognized, and which serve as the best key (so to speak) to those which are seated within. Such characters are natural, then, in proportion as they indicate general conformity or difference of structure; thus the distribution of the veins of the leaves,—a character easily recognized,—will in general serve to distinguish Exogens and Dicotyledons from Endogens and Monocotyledons; and it is therefore a very natural character, serving as a key to all those which are indicated by these terms. On the other hand, the number of stamens and pistils in a flower is a purely artificial character, since it gives no further certain information of the general structure of the plant.

26. Another general principle of Natural classification must next be pointed out. When a number of Plants or Animals are associated, on account of their general resemblance to each other, into a Natural group, it will be found that the characters in which they agree, are presented by some members of the group much more prominently than by others; and that in some they are occasionally so much wanting, that these can scarcely be regarded as connected with the rest; yet they would not seem to be more easily included in any other groups. Now, those members of a natural group which most strikingly present a union of all the characters by which it is distinguished, are spoken of as its types; and those in which these characters are less obvious are termed aberrant members of the group. It is by these, in fact, that natural groups are connected with one another; for it will generally be found that in the aberrant members of one group, its characters become (as it were) gradually shaded off, until they almost blend with those of the next. To revert to an illustration; where the countries occupied by two nations are not separated by any marked natural boundary, (as a broad river or high chain of mountains,) the peculiar characters of these nations, which may be regarded as most strongly exhibited in their respective chief towns become gradually blended towards the border where they meet, so that the transition from one to the other is by no means so abrupt, as if the traveller were conveyed at once from the metropolis of each to that of the other. Every natural group then, may be regarded as a sphere, surrounded by other spheres,—each representing another group,—which touch it at certain points, the type of each will occupy its centre, and the aberrant members will be disposed in various posi-
tions around it, in proportion as they lose its peculiar characters and approach other groups. For example, the group of Lizards is intermediate between that of Serpents and that of Tortoises. There are some Lizards in which the body and tail are greatly lengthened, whilst the legs are shortened, so that the form of the Snake is approached; and in the common Slow-worm or Blind-worm, the external form is completely that of a snake, whilst beneath the skin two pairs of small though perfectly formed legs may be found on careful examination. This, then, is an aberrant form, situated just on the border of both groups, and scarcely having a certain claim to a place in either. On the other side, the Lizards are connected with the Tortoises by a species commonly known under the name of the Allegator-Tortoise, or Snapping-Turtle, which may be considered as a Tortoise with a long Lizard-like neck, legs, and tail, or, as a Lizard with a Turtle-shell on its back. The Lizards are connected, again, with Birds (to which they would not seem to have the slightest possible relation) by means of a very curious animal not now existing, which had the general structure of the Lizards; but which had the fore-legs converted into wings like those of a bird; and which seems to have been covered with something intermediate between scales and feathers. Many similar instances will present themselves in the study of the vegetable kingdom.

27. Hence when it is stated that a Plant or Animal belongs to a particular group, it is by no means necessarily implied that it possesses all the characters which are considered as marking that group. Thus,—to revert to an instance just now employed in illustration,—the structure of the feathers, which are generally so characteristic of the class of Birds, is greatly modified in some of the species which approach nearest to other groups; in the Emu, for example (one of the Ostrich tribe) the feathers are little else than stiff branching hairs; and in the Penguin, those covering the fin-like wings resemble scales. So, again, in the first natural group of plants,—the Ranunculus or Crow-foot tribe,—there are some species which have the parts of the flower arranged in threes as in Eudogens; yet they are not really such, for their stems are Exogenous, the veining of their leaves is netted, and their embryo is dicotyledonous. Again the common Arum maculatum (Cuckow-pint) has reticulated leaves; but it is not an Exogen, because its stem is Eudogenous, and its embryo monocotyledonous. And the pond-weed (Potamogoton) has the parts of its flowers arranged in fours; yet it does not belong to Exogens, since its leaves are parallel-veined and its embryo is monocotyledonous.

28. In considering the several characters afforded by the varieties in the structure of Plants, it will be convenient to follow the same order as that which has been adopted in describing that structure. The elementary tissues do not afford any means of distinction, except in regard to
the primary divisions,—the presence of spiral vessels being on the whole characteristic of flowering Plants (which have been hence termed *Vascularis*); and their absence being nearly constant in Cryptogamia (which have been hence termed *Cellulares*). There are some of the inferior Phanerogamia, however, in which no spiral vessels can be detected; and in the Ferns which stand at the head of the Cryptogamia, modifications of them may be found. However, if on examining any portion of the fabric of an unknown plant, spiral vessels were distinctly seen this might be regarded as sufficiently indicating that the specimen belonged to the higher of these two groups. The peculiarity of the woody fibre in the *Coniferae* and allied orders, together with the absence of the dotted-ducts or special sap vessels, is characteristic of that portion of the Phanerogamic division; but excepting in this instance, no use can be made of the varieties of the elementary tissues, in defining the subdivisions of the classes of Plants.

29. The structure and mode of increase of the stem afford as already stated, the means of establishing the soundest division of the Phanerogamia: and the two groups of Exogens and Endogens are universally recognized as natural classes. Between these, however, there are several connecting links,—some Exogens exhibiting in their stem no separation into annual layers,—and some Endogens, presenting an approach to the Exogenous division of the kingdom. One small order (*Calycanthaceae*) is known by the presence of four incomplete centres of vegetation surrounding the principal one; and the Passion-flower tribe is remarkable for having the stem almost cut into four quarters; whilst a square stem is universal in the Dead-nettle tribe. In some orders, such as the *Cacteae* (Prickly-pear-tribe) and *Euphorbiaceae* (Spurge tribe), the quantity of cellular tissue usually so much predominates that the stems are soft and succulent; but this is not always the case, some genera having stems of the ordinary character. No very positive characters can in general therefore, be drawn from the structure of the stem, in dividing the classes into sub-classes and orders. Nor do the roots afford any better guide; since the modifications of form of which they are susceptible are very few, and they are by no means constant in particular groups. As a general rule, however, it may be observed that neither bulb nor rhizoma are found in Exogens, and that they are confined to a few orders among Endogens.

30. The leaves are subject to considerable modifications, both in position, form and structure, which are very useful in classification. The general differences among the leaves of Exogens, Endogens and Acrogens have already been adverted to. The relative position of the leaves, as whether alternate, opposite, or verticillate, is often a very important character, but in regard to this, as well as to other characters, it often
INTRODUCTION.

happens that it is of much greater value in some orders than it is in others. Thus in Lamiaceae (Dead-nettles) they are uniformly opposite: so that no plant can belong to the order, in which they are alternate or verticillate. In Urticaceae (the Nettle tribe,) on the other hand, they are constantly alternate; so that no opposite leaved plant can belong to the order. In this manner the common Dead-Nettles and Stinging-Nettles may be at once known from each other. But in many others, one arrangement is prevalent, and yet the other sometimes occurs. The degree of division of the leaves, again is subject to considerable uncertainty in many orders, from causes already mentioned; yet, in others notwithstanding a constant form is maintained; thus, leaves with teeth or jagged edges are never found in the order Cinchonaceae (from which the Peruvian bark is supplied) and they are very rare in Endogens. The particular characters afforded by the veining of leaves are much more constant, than those derived from their form; and it is probable that, as they have only been recently attended to, much assistance will be obtained in classification from an increased knowledge of them. A character which would not at first sight appear of much importance, is afforded by the presence or absence of those little dots in the leaves, which are reservoirs of oily secretions; yet these being connected as it would seem with some important differences in the general economy, are extremely characteristic of certain Natural orders, such as Myrtaceae (the Myrtle tribe,) and Aurantiaceae (the Orange tribe,) serving to distinguish all their members from those of other orders nearly allied to them. In other orders, however, there are some genera with, and others without these pellucid dots. The clear or milky character of the juices of the leaves and stalks, indicating as it does, the absence or presence of certain secretions which are characteristic of particular orders, will often prove of much use in distinguishing their members. At the base of the leaf-stalks are often found little leafy appendages (which are in fact leaves, in an imperfect state of development) termed stipules; the presence or absence of these frequently enables the Botanist to distinguish the plants of two allied orders, of which one possesses them, whilst the other does not, and certain peculiarities in them, are occasionally very characteristic of particular groups.

31. Passing on to the flowers, we first have to notice the characters afforded by the bracts; these are seldom of any use in distinguishing orders, on account of their constant variation within the limits of each; but they are often valuable in separating genera and species. The calyx is used in a variety of ways to distinguish orders, but the characters it affords are far from being of equal or uniform importance throughout. The number of sepals is sometimes a very useful and constant mark of a particular order; thus, in Cruciferae, the Cabbage
INTRODUCTION.

at once referred to their proper groups. The position of the ovary in respect to the calyx has been already adverted to; this character is generally expressed by the terms inferior or superior ovary. The presence or absence of partitions in the ovaries is a very important distinction. An ovary may be one-celled, because it consists of but a single carpel; or being syncarpous, it may contain an undivided cavity, from the obliteration of the partitions, or dissepiments, originally formed by the walls of the several adhering carpels. In this case the attachment of the ovules, or placenta, is either central, the ovules being clustered around a central column, or parietal, where they are attached to the outer wall. Varieties of structure of this nature are very important in distinguishing orders. A peculiar enlargement of the receptacle which sometimes expands between the bases of the carpels so as to separate them more or less completely as in the Strawberry, is often very characteristic of particular orders. The ripened ovary or fruit exhibits numerous and remarkable differences in its form, substance, and mode of dehiscence (or its manner of bursting when ripe;) but these do not usually receive much attention from Botanists; since although there are a few orders which are characterized by a particular kind of fruit, most others present numerous varieties among their different genera.

35. Many valuable characters are drawn from the seed, both in its early and mature conditions. The number of ovules—that is to say, whether they are definite or indefinite,—is frequently an important difference; still in some orders, there are genera nearly allied, in one of which the number is definite, whilst it is indefinite in the other. The position of the ovules is more essential than their number;—the chief distinctions are between those which, rising upright from the base of the cavity, are termed erect; and those, which hanging from its top, are called pendulous. Between these two conditions, however, there are other intermediate ones. Such a difference in the position of the ovules often serves to mark a distinct line of separation between the plants of two groups that are otherwise nearly allied. In the perfect seed, the number of cotyledons is a character of primary importance, for distinguishing the two great classes of Phanerogamia, as already several times stated. Even this, however, is subject to occasional exceptions, for there are Endogenous plants with two cotyledons and some Exogens with only one or even none, whilst again, some Exogens have several. As a means of distinguishing orders the presence or absence of a separate albumen is a character of great value, especially when the embryo bears a very small proportion to it in amount. Where, however the embryo and albumen are nearly equal in size, the character is of less importance; so that it is not uncommon to meet, in the same genera, of which the embryo alone fills the seed, and with others in
which a part is occupied by albumen; whilst in the orders especially characterized by it, there is probably not a single genus in which it is absent. It must be remembered that albumen exists in all seeds at an early period of their formation; and that the subsequent difference will depend upon the degree in which it is absorbed by the embryo.

36. The student who has given attention to the preceding statements, is not unlikely to feel some perplexity, on account of the constant uncertainty which has been stated to attend the value of the several characters that have been enumerated. But as he proceeds further, he will find that this uncertainty is greater in appearance than in reality; and that it necessarily results from the properties of a Natural group, as already described. In dividing the vegetable kingdom in an artificial method, it seems very easy to lay down a small number of characters as the standard; and to bring together, or to separate plants, according to their conformity or variety in these. But, as has been already shown, when we come to apply this plan, numerous difficulties are met with, in consequence of the differences which are of constant occurrence, among plants belonging to the same genus or even to the same species (§ 9;) so that even here the Botanist must be guided by general resemblance. Now, although it is quite true that no single characters, when traced throughout the vegetable scale, can be relied on, as indicating the natural affinities of plants, yet experienced Botanists have little difficulty in defining each order, by a certain combination of characters, which are peculiar to it, and not unfrequently, the plants belonging to one order may be separated from those of all other groups, by some evident and well-marked peculiarity.

DE CANDOLLE’S CLASSIFICATION.

37. On the foregoing principles, the class of Exogens is divided by De Candolle in the following manner:—

The first group consists of those, of which the flowers possess both calyx and corolla, and in which the petals of the latter are distinct, and which are therefore Polypetalous. This group is divided into two sub-classes, according to the mode of insertion of the stamens.

Sub-class I. Thalamiflora. Polypetalous Exogens, in which the stamens arise from the disk,—that is, are hypogynous. Sometimes the stamens adhere slightly to the sides of the ovary, but they are never epigynous, nor perigynous. (§ 32.)

Sub-class II. Calyciflora. Polypetalous Exogens in which the stamens arise from the calyx or corolla,—that is, are perigynous.

In the next sub-class, the flowers still possessing both calyx and corolla, have the latter formed of united petals, or are Monopetalous.
In this division the position of the stamens is not regarded as a primary character.

Sub-class III. Corolliflorae. Monopetalous Exogens.

In the lowest group, the corolla is always absent, making the flower *Apetalous*; and the calyx is not uniformly present. This character is regarded as sufficiently marking the group.

Sub-class IV. Monochlamydeae. Apetalous Exogens.

The object of this classification is to proceed from what are considered the most perfectly organized Exogens, to those which are least so. Thus all the parts are present and distinct from each other in *Thalamiflorae*; other things remaining the same, the stamens adhere to the perianth in *Calyciflorae*; the petals join together in *Corolliflorae*; and in *Monochlamydeae* first the corolla disappears, and then, among the most imperfect orders the calyx ceases to be developed.

38. The class of Endogens is not divided by De Candolle into any Sub-classes. It will, however, be convenient to consider their orders as characterized by the completeness or incompleteness of their flowers. The Complete Endogens may be again sub-divided into those with a *superior*, and those with an *inferior* ovarium. The orders having *Incomplete* flowers, are separated into those in which a cluster of flowers is inclosed in a single large bract, termed a *Spathe*, which is frequently colored (as in the Arum tribe;) and those in which the perianth of each flower is replaced by scale-like bracts, as in the Grasses.
No. 49.

Podophyllum peltatum.

May Apple
A FAMILY FLORA.

BERBERIDACEÆ.

The Berberry Tribe.

No. 49.

PODOPHYLLUM PELTATUM.

May applf. Wild mandrake, Wild lemon, Duck's-foot, &c.

Place—United States.
Quality—Insipid.
Power—Cathartic, narcotic.
Use—Bilious and intermittent fevers.

BOTANICAL ANALYSIS.

Class XIII. Polyandra. Order Monogynia.

Genus. PODOPHYLLUM.

From the Greek pous, foot, and phullon, leaf, in allusion to the long firm petioles on which the leaves are placed, resembling the webbed feet of aquatic birds.

Synonymes.—Entenfuss (Ger.), Endenpoot, (Dutch).

THE ESSENTIAL CHARACTERS.

Calyx. Sepals three—four—six, imbricate in two rows, often reinforced by petaloid scales.
Corolla. Hypogynous. Petals one to three times as many as the sepals, and opposite to them.
PODOPHYLLUM PELTATUM.

Stamens. As many or twice as many as the petals, and opposite to them. Anthers generally opening by recurved valves, extrorse. Ovary. One-celled, solitary, simple. Style often lateral. Stigma often lateral or peltate. Fruit. Berried or capsular. Seeds. One or few, attached to the bottom of the cell, or many, attached to lateral placentæ.

THE SECONDARY CHARACTERS.

Podophyllum. Calyx of three sepals, caducous. Corolla six—nine-petalled. Stamens numerous, with linear anthers. Berry one-celled, crowned with the single stigma.

Calyx three-leaved, minute. Corol five-to-nine-petalled. Stigma large, crenate, sessile. Berry one-celled, crowned with the stigma, large, many-seeded. Columnella, one-sided.

THE SPECIFIC CHARACTERS.

Podophyllum Peltatum. Leaves peltate, lobed. Flowers one. Stem round, sheathed at base, erect, dividing into two round leaf stalks, between which grows the flower.

Stem terminated with two peltate polinate leaves. Flowers single, inserted in the fork formed by the petioles of the leaves. Sometimes the plant is three-leaved and sometimes the flower is inserted on the side of one of the petioles.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

The May Apple is among our more curious and interesting plants. It is indigenous, herbaceous, and the only species belonging to the genus. The plant is extensively diffused throughout the United States, and especially common in western New York. It is however every where found in abundance, on congenial soils, from the state of Maine to the Mexican gulf, and from the Atlantic seacoast to the Oregon mountains. It grows luxuriantly in moist shady woods, and in low marshy grounds. It is propagated by its creeping root and is often found in large patches. The flowers appear about the end of May and beginning of June, and the fruit ripens in the latter part of September, at which time the leaves wither and fall off. The fruit is edible, and though very agreeable
PODOFYLLUM PELTATUM.

To some persons, it is to others extremely unpleasant. The leaves are poisonous, and its medical virtues are wholly confined to the root, which is said to be most efficient when collected after the falling of the leaves. It resembles in taste and even appearance the fruit of the Passiflora edulis of the West Indies.

The root (rhizoma) of the Podophyllum Peltatum is perennial, creeping, usually several feet in length, about one quarter of an inch thick, of a brown color externally, smooth-jointed and furnished with radicles at the joints. The stem is about a foot high, round, sheathed at base, erect, dividing into two round leaf-stalks, between which grows the flower. Each petiole bears a large smooth peltate palmate leaf, deeply divided into five—seven lobes, which are each two-parted and dentate at the end. They are often peltate but generally separate at base quite to the petiole. The flower is stalked, drooping or nodding, white with a three-leaved, caducous calyx, which is oval, obtuse, concave and deciduous. The corolla is of about six petals, often more, which are obovate, concave, white, fragrant and curiously reticulated with veins. The stamens are from thirteen to twenty, shorter than the petals, with oblong yellow anthers of twice the length of the filaments. The stigma is sessile, and rendered irregular on its surface by numerous folds or convolutions. The fruit is about the size of a plum, crowned with the persistent stigma, and containing a sweetish fleshy pulp, in which about twelve ovate seeds are imbedded. It ripens early, and when ripe it is of a yellowish color, diversified by round brownish spots.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

Podophyllum has been examined by several eminent Chemists, with a view to determine its constituents, and it has been found to contain resin, starch, and a peculiar vegetable substance crystallizable in white silky tufts. There has also been obtained from it a peculiar principle to which the name of Podophyllin has been given. It is in pale brown shining scales, unalterable in the air, very sparingly soluble in cold water, much more soluble in boiling water, soluble also in ether, and freely so in boiling alcohol. It has neither acid nor alkaline properties. Nitric acid dissolves it with effervescence, producing a rich, deep red color. Its taste at first is not very decided in consequence of its sparing solubility, but becomes at length very bitter and permanent, and its alcoholic solution is intensely bitter. It may be obtained by boiling the root with quick-lime in water, straining the decoction, precipitating the lime with sulphate
PODOPHYLLUM PELTATUM.

Of zinc, evaporating the clear solution to the consistence of an extract, treating this with cold alcohol of 0.817, filtering and evaporating the alcoholic solution and treating the residue with boiling distilled water which deposits the bitter principle on cooling.

The dried root is in pieces about two lines in thickness, with swelling, broad, flattened joints at short intervals. It is much wrinkled lengthwise, is yellowish or reddish brown externally and furnished with fibres of a similar but somewhat paler color. The fracture is short and irregular and the internal color is whitish. The powder is light yellowish-grey, resembling that of jalap. The root in its aggregate state is nearly inodorous, but in powder has a sweetish and not unpleasant smell. The taste is at first sweetish, afterwards bitter, mucous and slightly acrid. The decoction and tincture are bitter.

The Podophyllum Peltatum is always considered an active and certain cathartic, producing copious liquid discharges without much griping or other unpleasant effects. It has a peculiar effect upon all the secretions and excretions, stimulating them to a healthy action, and often answers the purpose of removing obstructions without any bad effects whatever. In some cases it has given rise to nausea and even vomiting, but the same result is occasionally experienced from every active cathartic. In its action upon the bowels its operation resembles that of jalap, but it is rather slower and by some it is supposed to be more drastic. It extends its influence through every part of the system, touching every gland when given in small doses and repeated every two or three hours, while large doses evacuate and exhaust the system.

The cases to which May Apple is particularly adapted are of an inflammatory character, especially at the commencement where brisk purging is required. It is very highly spoken of by many eminent writers, who have tested its efficacy, and they recommend its employment in bilious fever and hepatic congestions. For these purposes it has been much used in various parts of the country and with the most happy effects. In dropsical affections, and in rheumatic and scrofulous complaints the supertartrate of potassa is a useful addition, by which the action of both is reciprocally improved. It is employed as a vermifuge in tea spoonful doses, and repeated.

Some Physicians and Practitioners recommend the powdered root as an escharotic to cleanse foul and ill-conditioned ulcers and dispose them to heal and to promote the exfoliation or removal of carious or rotten bones. The powder should be sprinkled on the affected part once in from two to five days. It is also said to destroy proud flesh without any injury to the sound parts.
N° 50.

DAFFNE MEZEREUM.
Mezereon.
THYMELACEÆ.

Daphnads.

No. 50.

Daphne Mezerœum.

Mezerœon. Spurge olive.

Place—Europe.
Quality—Acrid.
Power—Stimulant, diaphoretic.
Use—Chronic cutaneous diseases, rheumatism.

BOTANICAL ANALYSIS.

Natural Order. Vepreculæ—L. Thymeææ—J.

Class VIII. Oc‘andria. Order Monogynia.

Genus. Daphne.

The Greek name of the Laurel, for the nymph Daphne, who it is said was changed into a laurel, which some species of this genus resembles.

Synonymes—Lauroele gentille (F’), Kellerkals (Ger.), Laureola femina (L.), Pepperbompje (Dutch), Tibast (Swed.), Kielderhals (Dan.), Wylezlo lyko (Pol’), Mezerœon (Span’), Mezerœo (Port’).

THE ESSENTIAL CHARACTERS.

Calyx. Free, tubular, colored, limb four (rarely five)-cleft, imbricated in aestivation.

Stamens. Definite, inserted into the calyx and opposite to its lobes when equal to them in number, often twice as many.

Ovary. Solitary, with one ovule. Style one. Stigma undivided.

Fruit. Hard, dry, drupaceous. Albumen wanting or thin.
DAPHNE MEZEREUM.

THE SECONDARY CHARACTERS.

THE SPECIFIC CHARACTERS.

Flowers sessile, cauline, in threes. Leaves lanceolate.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

Mezereum grows wild in England and in many parts of the North of Europe, but for medical use and as an ornamental shrub it is cultivated in gardens. It is mentioned by Linnaeus as a characteristic of the genus, to which the plant under consideration belongs, that the terminating buds of the shoots produce leaves, and the lateral ones flowers. This affords a hint to the cultivator to be sparing of his knife. It flowers very early in the season, before the appearance of the leaves. It is an old inhabitant of the shrubbery, and deservedly much admired for its precocity and fragrance. It thrives well in loamy soil and will grow in the shade and even under the drip of other trees. It is a native of all parts of Europe from Lapland to Sicily, but was first received from Elbing before it was observed to be a native. The roots of Mezereum are large in proportion to the branches, and have more the character of the fusiform or ramose roots of a herbaceous than of a ligneous vegetable.

The plant is hardy, seldom exceeding four feet in height, with a strong, woody, branching stem, covered with a smooth grey cuticle; and a tough fibrous inner bark. The root is of a fibrous texture, pale colored, with a smooth olive colored bark. The leaves which
DAPHNE MEZEREUM.

are protruded from the extremities of the branches are tender, pale green, deciduous, lanceolate, sessile, entire and smooth. The flowers are of a pale rose-color, odorous, surrounding the twigs in clusters, below where the leaves are sent off, they are sessile, two, three and four clustered, with deciduous bracts at the base of each cluster, monopetalous, tubular, and the lip divided into four ovate spreading segments. The stamens are alternately shorter, the four higher ones displaying their colored anthers at the mouth of the tube. The germen is oval, supporting a flattish stigma on a very short style. The fruit is a red pulpy drupe, containing one round seed.

There are several varieties of this genus with different colored flowers and fruit, pink colored in one variety, red in another, white in a third clothing nearly the whole plant.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The inner bark of every part of this plant when fresh, is very acrid, capable of producing inflammation, vesication, and a discharge of serum when applied to the skin, and when chewed excites a considerable heat of the mouth and fauces which continues for many hours afterwards. The fruit is equally acrid, acting as a corrosive poison, not only to man, but to many quadrupeds, if eaten in large quantities.

For medical purposes, the bark of the root is directed to be used. The roots are dug up in the autumn, after the leaves are fallen. The cuticle of the dried root is corrugated and of a brown color, the inner bark has a white cotton-like appearance. As they are imported from Germany and found in the stores, they are derived from the stem and branches, and are long strips folded in bundles of a grayish or reddish brown color externally, under which on the removal of the epidermis it is greenish, and internally white and fibrous. The taste is at first somewhat sweetish, but soon becomes very acrid and unpleasant: in a fresh state the smell is nauseous, but when dried it is inodorous, although it retains its acrimony. The topical action of Mezereon bark is that of an irritant, and when the bark has been applied to the skin vesicant. It has been recommended as a popular application for the tooth-ache.

From the result of the chemical analysis of the Daphne Mezereum, by several eminent chemists, it appears to contain an acrid resin and a peculiar crystalline principle discovered by Vanquelin to which he gave the name of Daphnin. By digesting the bark in alcohol, then evaporating the liquid to separate the resin and dilu-
DAPHNE MEZEREUM.

Tincting the residual fluid with water, filtering and adding acetate of lead, he obtained a copious yellow precipitate, which when freed from the lead by means of sulphurated hydrogen gas he found this vegetable principle, *sui generis*. It is colorless and transparent, crystallizes in aggregated prisms, very soluble in water, alcohol or ether, is inodorous and of an acrid taste. It is considered analogous to asparagin, and that when pure it has very slight powers. It is not the active principle of Mezereon.

The *acrid resin* is obtained by boiling the bark in alcohol: when the solution cools some wax is deposited. The supernatant liquor is to be evaporated, and the residual extract washed with water. The resin then left behind is dark green, and soluble in both alcohol and ether. To this substance Mezereon owes its acridity. There is however, some reason to suspect that this resin is itself a compound of two principles, viz., an acrid vesicating fixed oil and another substance. The resin is rendered soluble in water by means of the other constituents of the bark. There are in addition to those already enumerated wax, a trace of volatile oil, yellow coloring principle, uncrystallizable but fermentable sugar, nitrogenous gummy matter, reddish-brown extractive, woody fibre, free malic acid and malates of potash, lime and magnesia.

DAPHNE MEZEREUM operates as a stimulating diaphoretic, increasing the general arterial action and determining powerfully to the surface, but it is apt to occasion vomiting and purging. It has long been externally employed as a stimulus to ill-conditioned ulcers, and the recent bark macerated in vinegar and applied to the skin is recommended in chronic cases of a local nature; under certain management it produces a serous discharge without blistering, and is thus rendered useful by answering the purpose of what is called a perpetual blister, while it occasions less pain and inconvenience. To form the issue, the bark must be renewed every night and morning, and afterwards once in twenty-four hours, to keep open the drain. It has been employed successfully as a local stimulant in a case of difficulty of swallowing occasioned by paralysis. Though the case was of three years' standing, the patient recovered the power of swallowing in about a month, by very frequently chewing thin slices of the root. For this purpose it should be sliced longitudinally; as the acrimony resides in the bark only, the woody fibre being nearly inert. Internally a decoction of this bark has been used against chronic rheumatism, scrofulous swellings, lepra and some other cutaneous diseases.

The branches make a good yellow dye.
N° 51.

EUPATORIUM PERPOLIATUM

Thorowwort Boneset.
COMPOSITÆ.
The Aster Tribe.

No. 51.

EUPATORIUM PERFOLIATUM.

Boneset. Thorough wort, Fever wort, &c.

Place—United States.
Quality—Bitter.
Power—Sudorific, tonic.
Use—Dyspepsia, catarrhal affections, fevers, &c.

BOTANICAL ANALYSIS.

Class XIX. Syngenesia. Order Polygamia æqualis.

Genus. Eupatorium.

Named in honor of Mithridates Eupator, king of Pontus, who first used it in medicine. The properties of the Asiatic and European species were made known by him. Pliny.

Synonymes.—Eupatoire perfolice (F.), Durchwachsener Wasserdost (Ger.)

THE ESSENTIAL CHARACTERS.

Calyx. Closely adherent to the ovary, the limb wanting, or membranaceous and divided into pales, bristles, hairs, &c., called pappus.

Corolla. Superior, consisting of five united petals, either liguate or tubular.
EUPATORIUM PERFOLIATUM.

Stamens. Five, alternate with the lobes of the corolla. Anthers cohering into a cylinder.

Ovary. Inferior, one-celled, one-ovuled. Style two-cleft, the inner margins of the branches occupied by the stigmas.

Fruit. An achene, dry, indehiscent, one-seeded, crowned with the pappus.

Flowers collected into a dense head (capitum), upon a common receptacle, surrounded by an involucre of many bracts (scales).

THE SECONDARY CHARACTERS.

Involucre imbricated, (rarely simple,) oblong. Style long, cloven half way down. Egret pilose, scabrous, or rough papillose. Receptacle naked. Akenes smooth and glandular, five-striate.

THE SPECIFIC CHARACTERS.

Leaves connate-perfoliate, oblong-serrate, rugose, downy beneath. Stem villose.

THE ARTIFICIAL CHARACTERS.

Class Syngenesia. Stamens five, cohering by the tips of their anthers. Order Polygama Æqualis. Herbaceous plants. Flowers or florets collected into dense heads (compound flowers). Corollas monopetalous, of various forms.

NATURAL HISTORY.

The Boneset, or as it is sometimes called Thorough wort, is a common well known plant of low grounds, meadows, the banks of streams and other moist places, growing generally in bunches, and abounding in almost all parts of the United States. It flowers from the middle of summer to the latter end of October, and is always easily distinguished by the leaves being pierced by the stem. The root of the plant is perennial, horizontal and crooked, sending up numerous herbaceous stems, which are erect, round, rough and hairy, from one to three feet high, simple below and trichotomously branched near the summit, and of a grayish-green color. The character of the leaves is peculiar, and serves to distinguish the
EUPATORIUM PERFOLIATUM.

species at the first glance. They may be considered either as perforated by the stem, perfoliate, or as consisting each of two leaves united at the base, connate. Considered in the latter point of view they are opposite and in pairs which decussate each other at regular distances upon the stem; in other words, the direction of each pair is at right angles with that of the pair immediately above or beneath it. They are narrow in proportion to their length, broadest at the base where they coalesce, gradually tapering to a point, serrate, much wrinkled, paler on the inside than the upper surface, and beset with whitish hairs which give them the same color as the stalks. The uppermost pairs are sessile, not joined at the base. The flowers are white, numerous, supported on hairy peduncles in dense, depressed, terminal corymbs, which form a flattened summit to the plant. The calyx, which is cylindrical and composed of imbricated, lanceolate, hairy scales, encloses from twelve to fifteen tubular florets, having their border divided into five spreading segments. The anthers are five in number, black and united into a tube, through which the bifid filiform style projects above the flower. The seeds are black, prismatic, acute at base, on a naked receptacle. The pappus has scabrous hairs.

This plant appears to have been known and held in much estimation by the Aborigines of America. The first European settlers of this continent derived their knowledge of its virtues from them, and it became a favorite and universal remedy in domestic practice long before it attracted the attention of the profession. It received the name of Boneset from the fact of its having been employed in a painful disease called break-bone fever, and in New England it is called Joepye, from an Indian of that name who cured typhus with it by a copious perspiration.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

No accurate analysis of the Eupatorium Perfoliatum has been made since the recent improvements in vegetable chemistry. An examination of it some years since, by Dr. Bigelow, showed that the leaves and flowers abound in a bitter extractive matter, and which is probably the active principle. It is soluble in water and alcohol, and forms copious precipitates with the metallic salts. It has a faint agreeable odor, and a strongly bitter and somewhat peculiar taste. Rafinesque speaks of a peculiar substance in it which he calls Eupatorine, and says it is brown, bitter, resiniform, soluble in water and alcohol, forming sulphates, nitrates, &c.
Eupatorium Perfoliatum.

All parts of the plant are used, but the herb only is officinal. It is sudorific, tonic and diaphoretic. In large doses, emetic and aperient. It is generally found in the stores in packages put up by the Shakers at Lebanon, N. Y. These packages contain the leaves and flowers, and when not deteriorated by damp are a good mode of preparing the article. Some difference of opinion has existed as to which part of the plant is most efficient. From various experiments it has been thought that the leaves were the most active, but more extended observations have shown that the flowers and small branches are equally useful.

The medical properties of Eupatorium Perfoliatum are various and important. It is employed to fulfil a number of indications, being given as a tonic, a diaphoretic or an emetic, as the circumstances of the case might require. Besides these, many other properties have been attributed to it, and though it is certainly a highly important remedy when properly administered, it cannot be endowed with all the remarkable and numerous powers that have been attributed to it.

As a tonic it is deserving of high commendation, and is well suited to those cases of dyspepsia, general debility and want of tone in the system requiring the exhibition of the simple bitters. With a view to its tonic effects it is best administered in substance or in cold infusion, and is a mild and agreeable bitter. The dose of the powder is twenty or thirty grains, that of the infusion one or two fluid ounces frequently repeated.

As a diaphoretic, there is ample proof of its powers, particularly in catarrhal affections and inflammatory rheumatism; given in warm infusion so as to produce copious perspiration or vomiting. In the commencement of catarrh it will frequently arrest that complaint. In various forms of fever, particularly remittent and typhoid fevers, it is highly esteemed and proved beneficial by the testimony of many distinguished practitioners. In yellow fever it is also said to have been productive of very great advantage. With a view to its diaphoretic operation, the infusion should be administered warm, in large draughts, and the patient remain covered in bed.

As an emetic it is also well deserving of notice. It is given in warm decoction, and may be employed for this purpose as a substitute for the infusion of camomile. It is considered valuable in the early stage of autumnal fevers. In large doses it is said to act on the bowels, and it has long been esteemed as an efficacious remedy in bilious colic accompanied by obstinate constipation, in the dose of a teacupful every half hour until a cathartic effect is produced.
No. 52.
Asarum canadense.
Canada Snake root Wild Ginger
ARISTOLOCHIACEÆ.

The Snake-root Tribe.

No. 52.

ASARUM CANADENSE.

Canada Snake-root. Wild ginger, Colts-foot, Asarabacca.

Place—United States.
Quality—Slightly bitter.
Power—Aromatic, nervine.
Use—Asthma, whooping cough.

BOTANICAL ANALYSIS.

Natural Order. Sarmentaceæ—L. Aristolochiæ—J.
Class XX. Gynandria. Order Decandria.

Genus. ASARUM.

An ancient name, supposed to have been formed from α, private, and σάρκα, bandage, because it was not used in garlands, of which the ancients were so fond.

Synonyms.—L'asaret (F.), Die haselwurz (Ger.), Mansoir (Dutch), Asaro (I.), Asaro (Sp.), Wodolei (Russ.), Kopytriuk (Pol.)

THE ESSENTIAL CHARACTERS.

Calyx. Tube adherent to the ovary. Segments three, valvate in aestivation.
Stamens. Six—twelve, epigynous, or adhering to the base of the short and thick styles.
Ovary. Three—six-celled. Stigmas radiate, as many as the cells of the ovary.
ASARUM CANADENSE.

Fruit. Capsule or berry, three—six-celled, many-seeded. Embryo minute in the base, of fleshy albumen.

THE SECONDARY CHARACTERS.

Calyx somewhat bell-form, three or four cleft, superior. Corol wanting. Anthers proceeding from the middle of the filaments. Stigma six-cleft. Capsule coriaceous, six-celled, crowned with the calyx.

THE SPECIFIC CHARACTERS.

Asarum Canadense. Leaves two, broad reniform. Calyx woolly, deeply three-cleft, the segments reflected. Leaves broad, kidney-form, in pairs.

Calyx woolly, deeply three-parted, divisions sub-lanceolate, reflected.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

Canada Snake-root or Wild ginger, is an indigenous small and acaulescent plant, inhabiting woods and shady places from Canada to Carolina and Missouri. It is most abundant in hills, valleys and rich alluvions. It flowers from the last of April to the beginning of June, and is of easy propagation and culture.

The species of Asarum under consideration very closely resembles the Asarum Europæum, in appearance and botanical character. It has a long, creeping, jointed, fleshy, yellowish root or rhizoma, furnished with radicles of a similar color. The stem is very short, dividing, before it emerges from the ground, into two long, round, hairy leafstalks, each of which bears a broad kidney-shaped leaf, pubescent on both surfaces, of a rich shining light green above, veined and pale or bluish beneath. A single flower stands in the fork of the stem, upon a hairy pendulous peduncle. The flower is often concealed by the loose soil or decayed vegetable...
ASARUM CANADENSE.

matter, so that the leaves with their petioles are the only parts that appear above the surface of the ground. There is no corolla. The calyx is very woolly, and divided into three broad concave acuminate segments with the ends reflexed, of a deep brownish purple color on the inside, and of a dull purple, inclining to greenish, externally. The filaments, which are twelve in number and of unequal length, stand upon the germ and rise with a slender point above the anthers attached to them. Near the divisions of the calyx are these filamentous bodies, which may be considered as nectaries. The pistil consists of a somewhat hexagonal germ and a conical grooved style surmounted by six revolute stigmas. The capsule is six-celled, coriaceous and crowned with the adhering calyx, containing many small seeds.

There are many varieties of the Asarum, with small or large leaves rounded or mucronate, spotted or unspotted. The flowers also vary in color from greenish purple to dark blue. The names, Wild ginger, Snake-root, are common to all these varieties, although very different in appearance, but similar in taste, smell and properties. They are frequently and indiscriminately introduced into the bales containing the officinal drug and commingled with it.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

A chemical investigation of the root of Asarum Canadense has been made by Dr. Bigelow, which has been repeated by the late Mr. Rich'd Rushton. They found it to contain gum, starch, resin, fatty matter, chlorophylle, volatile oil, salts of lime and potassa, iron and lignin. The volatile oil has a light greenish-yellow color, a warm, fragrant, slightly bitterish aromatic taste. It is soluble in all proportions in alcohol and ether, but less perfectly in water. From the close botanical analogy of the plant with the European Asarum, it might be supposed, like that, to possess emetic and cathartic properties, but at least with the dried root or the leaves such does not appear to be the fact. Where vomiting has been caused by the use of this plant, it is more attributable to the quantity taken than to the possession of any inherent emetic qualities, it may be supposed to exhibit.

The root alone is officinal, and is prepared by removing during the summer and cleansing and drying in the shade; in this process the radicles from their delicacy are separated. When fresh it has a yellowish color. As found in the shops it is in long more or less contorted pieces, about the thickness of a straw or larger, the exter-
nal covering is brownish and wrinkled, the internal substance is white, hard and brittle, occasionally the fragments of the radicles are attached. It comes either in mass or in square packages from the Shakers at Lebanon, New York, when it is connected with the leaves and is subject to mouldiness from the partially dry state necessary to packing by pressure. Its taste is agreeably aromatic and slightly bitter, the smell is aromatic. It is by some supposed to be intermediate between that of ginger and serpentaria, by others thought to bear a closer resemblance to that of cardamome. The taste of the petioles which usually accompany the root, is more bitter and less aromatic.

The root is an aromatic stimulant tonic, and in a warm decoction is possessed of no inconsiderable diaphoretic properties resembling the Serpentaria in its action on the system, and may be advantageously used as a substitute for it, but is rather more stimulating. In diseases of the skin, attended with fever, in which the eruption is tardy or has receded, and the grade of action is low, it is thought to be useful by promoting the cutaneous affection. It has also been strongly recommended in intermittent fevers, and though itself generally inadequate to the cure of the complaint, often proves serviceable as an adjunct to Peruvian bark. With the same remedy it is frequently associated, and with considerable advantage, in the treatment of typhus diseases.

Asarum, like all other articles of the same class, must vary its effects on the animal economy with the mode of exhibition; thus its sudorific power will be manifested by exhibition in warm infusion, and in large quantities in this form it will frequently prove emetic; in cold infusion or tincture, it is cordially stimulating and tonic.

The leaves, when dried and powdered, have powerful erethic properties, and make a fine stimulating cephalic snuff, which may be used in all disorders of the head and eyes. They excite irritation and a discharge of mucus from the nasal membrane; and they are useful in certain affections of the brain, eyes, face, mouth and throat, on the principle of counter-irritation: thus in paralytic affections of the mouth and tongue, in toothache and in ophthalmia.

The root is used by the inhabitants of many parts of the country as a substitute for ginger, and for many purposes is fully equal to it. M. Lemery, in his Dictionnaire Universal des Drogues Simples, published in 1733, alludes to its substitution for this purpose by the Aborigines of America. It also forms the basis of a spirituous drink, which may be made by the infusion of the whole plant in fermenting wine or beer:
No. 53.
ARUM TRIPHILUM.
wake robin.
ARACEÆ.

The Arum Tribe.

No. 53.

ARUM TRIPHYLLUM.

Dragon root. Wild turnip, Wake robin.

Place—America.
Quality—Pungent.
Power—Acrid, narcotic.
Use—Cough, chronic bronchitis, asthma, dropsy, &c.

BOTANICAL ANALYSIS.

Natural Order. Calamaria—L. Aroidææ—J. Lind.
Class XXI. Monoeia. Order Polyandria.

Genus. ARUM.

Formerly Aron, supposed to be an ancient Egyptian word, by which the Arum colocasia was known. The last mentioned name is an alteration of its Arabic denotiveqolgas, according to Forskahl.

Synonymes.—Le gouet (F.), Der aronswurz (Ger.), Kalfsvoot (Dutch), Aro (I.), Yaro (Sp.), Munksesvands (Dan.)

THE ESSENTIAL CHARACTERS.

Flowers. Mostly monœcious and achlamydeous, arranged upon a naked or apathaceous spadix. Perianth, when present, consisting of four—six parts.

Stamens. Definite or indefinite, hypogynous, very short. Anthers ovate, extrorse.

Ovary. Free, one—several celled. Stigma sessile.

Fruit. Berry succulent or dry.
ARUM TRIPHYLLUM.

Seeds. Solitary or several, with fleshy albumen.

THE SECONDARY CHARACTERS.

Spathe cucullate, one-leaved. Spadix not entirely covered with the fructification, being more or less naked above, with pistillate flowers beneath, and staminate in the middle (sometimes a few are staminate beneath). Berry mostly one-seeded, generally cirrose-glandular beneath.

THE SPECIFIC CHARACTERS.

Sub-caulescent. Leaves ternate. Leaflets ovate-acuminate, peduncled, with the laminae as long as the spadix.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

The Dragon root or Wake robin is a native of America, both North and South, and is common in all parts of the United States, growing in damp woods, in swamps, along ditches, and in other moist shady places. There are three varieties of this species of Arum, distinguished by the color of the spathe. One variety, virêns, has a green spathe. Another, atroperurnireum, has a dark purple spathe. And the other, album, has a white spathe.

This plant has a perennial root or cormus, which early in the spring sends up a large, ovate, acuminate, variously colored spathe, convoluted at bottom, flattened and bent over at top like a hood, and supported by an erect, round, green or purplish scape. The scape is from eight to twelve inches high, embraced at the base by the long sheaths of the petioles. Within the spathe is a club-shaped spadix, much shorter than the spathe, green, purple, black or va-
ARUM TRIPHYLLUM.

Ligated, rounded at the end and contracted near the base, where it is surrounded by the stamens or germs in the dioecious plants, and by both in the monoecious, the female organs being below the male. The spathe and upper portion of the spadix gradually decay while the germs are converted into a compact bunch of shining scarlet berries. The leaves, which are usually one or two in number and stand on long sheathing footstalks, are composed of three ovate-acuminate leaflets, paler on their under than their upper surface, and becoming glaucous as the plant advances.

The flowering system of the plants of this tribe presents many points of interest. On opening the spathe, it is found to be whitish in its interior and closely surrounding a central column or spadix, on which the minute flowers are crowded. On detaching these are found at the bottom several tiers of round ovaria, which do not possess any proper style or stigma, but have a sort of puckering at their points, which serves the purpose of the latter. Each is one-celled and contains two erect ovules. Above there are two or three rows of abortive or undeveloped ovaria in the form of horned pear-shaped bodies. Above these again there is a crowd of stamens with very short filaments, and these are surmounted by another cluster of abortive ovaria. Here, accordingly, is a large cluster of pistilliferous and staminiferous flowers, in which the floral envelopes are entirely wanting, and in which, therefore, the separate flowers can scarcely be distinguished. Each ovarium, however, is the essential part of a pistilline flower; whilst every cluster of anthers is the essential part of a staminous flower, so that here are the most necessary organs of fructification reduced almost to the lowest condition in which they can exist.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

All parts of the Arum Triphyllum are highly acrid, and this is more apparent in the root, which only is officinal. In the green state it is stimulant, expectorant, carminative and diaphoretic. The root is roundish, flattened, an inch or two in diameter, covered with a brown loose wrinkled epidermis, and internally white, fleshy and solid. In the recent state it has a peculiar odor, and is violently acrid, producing when chewed an insupportable burning and biting sensation in the mouth and throat, which continues for a long time, and leaves an unpleasant soreness behind. These symptoms are alleviated by buttermilk or oily liquors. Its action does not readily extend through the cuticle, as the bruised root may lie upon the
ARUM TRIPHYLLUM.

The skin till it becomes dry without producing pain or even redness. The acrid principle is extremely volatile and is entirely driven off by heat, and by drying. It is not imparted to water, alcohol, ether or olive oil. The root loses nearly all its acrimony by drying, and in a short time becomes quite inert, and almost an insipid farinaceous substance. It may, however, be kept in its green state a considerable time by burying it in moist sand in a cellar. It is found to contain, besides the acrid principle, from ten to seventeen per cent. of starch, albumen, gum, sugar, extractive lignin, and salts of potassa and lime. The starch may be obtained from it as pure white and delicate as from the potato. The secula of the dried root is a pure and excellent arrowroot.

In Europe the dried root of the Arum maculatum (whose medicinal properties are precisely those of the plant under consideration of this country) is sometimes employed by the common people in times of great scarcity as a substitute for bread; and an amylaceous substance is prepared from it in England called Portland arrowroot or Portland sago. This substance is a white powder, whose particles examined by the microscope are found to be exceedingly small. They are circular, mullar-shaped or polyhedral. The angular appearance of some of them probably arises from compression. The hilum is circular and apparently lies in a small depression. It cracks in a linear or stellate manner. This substance is very nutritious and demulcent, affording a light, mild and agreeable article of diet, well adapted for the sick and convalescent, and particularly suited from its demulcent properties to bowel complaints and diseases of the urinary passages.

This article must be used in substance, and in its recent state is a powerful local irritant, possessing the property of stimulating the secretions, particularly those of the skin and lungs. It has been given with considerable advantage in asthma, pertussis, chronic catarrh, chronic rheumatism, and various affections connected with a cachetic state of the system. Immediately taken from the ground it is too acrid for use. The recently dried root, which retains a portion of the acrimony, but not sufficient to prevent its convenient administration, is usually preferred. It may be given in the dose of ten grains, mixed with gum arabic, sugar and water, in the form of emulsion, repeated two or three times a day, and gradually increased to half a drachm or more. The powder made into a paste with honey or syrup and placed in small quantities on the tongue so as to be gradually diffused over the mouth and throat, is said to have proved useful in the aphthous sore-mouth of children.
No. 54.
MENTHA PIPERITA.
Peppermint
LABIATÆ.
Labiate Plants.

No. 54.

MENTHA PIPERITA.

Peppermint.

Place—Europe.
Quality—Penetrating, grateful.
Power—Stomachic, stimulant.
Use—Nausea, griping, flatulent colic, hysteria.

BOTANICAL ANALYSIS.

Natural Order. Verticillata—L. Labiateæ—J.
Class XIV. Didynamia. Order Gymosspermia.

Genus. MENTHA.

Mintha or Minthe, in old Greek. The Poets feign that Mintha was a daughter of Cocytus, transformed into the plant which bears her name; an allegorical description of the terrible effects ascribed to the plant by the ancients.

Synonyms.—Menthe poivree (F.), Pfeiffmunze (Ger.), Peperminte (Dutch), Peparmynta (Sued.), Menta Piperita (L.), Verbal nica de saper de Pimienta (S.), Hortelaa apimentada (Port.)

The essential characters.

Calyx. Tubular, regularly five-toothed or cleft or bilabiate, persistent.
Corolla. Bilabiate, (rarely regular, five-toothed,) the upper lip bifid or entire, overlapping in aestivation the lower three-cleft one.
Stamens. Four, didynamous, or sometimes only two, the upper pair being abortive or wanting, situated on the corolla tube. Anthers mostly two-celled.
MENTHA PIPERITA.

Ovary. Free, deeply four-lobed, the single style arising from the base of the lobes.

Fruit. One—four hard nuts or achenia.

Seeds. Erect, with little or no albumen. Embryo erect. Cotyledons flat.

THE SECONDARY CHARACTERS.

MENTHA. Calyx equally five-toothed. Corolla nearly regular, four-cleft, the broadest segment emarginate. Stamens four, straight, distant. Anthers cells parallel. Filaments naked.

Corolla nearly equal, four-lobed, broadest division emarginate. Stamens erect, distant.

THE SPECIFIC CHARACTERS.

Spikes obtuse, interrupted below. Leaves subovate, somewhat glabrous, petiolated. Stem glabrous at the base.

THE ARTIFICIAL CHARACTERS.

Class Didynamia. Stamens four, two of them longer than the other two. Order Gymnospermia. Seeds naked. Achene four (or fewer) included in the calyx. Corolla monopetalous and labiate.

NATURAL HISTORY.

Peppermint is a native of Europe, and has become naturalized in many parts of the United States. It is a perennial herbaceous plant, and grows in wet and moist places, flowering the latter part of the summer. It is occasionally found growing wild along the fences and bye places of the country. In many parts of New England, and especially in the western part of New York, in Ohio and New Jersey, the plant is largely cultivated for the sake of its volatile oil. All the species are raised by the same methods, by parting the roots, by offsetting young plants, and by cuttings of the stalks. The cultivators of the plant observe that to keep up its quality, the roots must be transplanted every three years, otherwise it degenerates into the flavor of Spearmint, Mentha viridis. If the plant be cut in wet weather it changes to black and is little worth.

The root of the plant is creeping. The stem quadrangular and
MENTHA PIPERITA.

channeled, nearly upright and about two feet high, branching, purplish and rather hairy with the hairs bent backwards. The leaves are of a dark green color, opposite, petiolate, ovate, rather pointed, serrated, the upper side smoother and less pubescent than the under, which is paler with white and purple veins. The flowers are in terminal spikes, solitary, almost capitulate, interrupted beneath with the lower whorl more remote, and on a footstalk. The bracts are lanceolate and ciliated. The calyx is furrowed, tender, studded with glandular points. The base entirely naked, very smooth and five cleft, with the teeth of a blackish purple color ciliated. The corolla is purple, and conceals within its tube the anthers, which are on short filaments. The germen is four cleft, with a filiform style longer than the corolla, and furnished with a bifid stigma. The four-cleft germ is converted into four seeds, lodged in the calyx.

Sir J. E. Smith supposes that this plant was discovered by Dr. Eales, and says that what is called Peppermint in the North of Europe is merely a variety of Mentha hirsuta, having a similar odor, and is the Mentha piperita of the Linnaean herbarium.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The whole plant is officinal. The odor of both the recent and dried plant is peculiar and well known, aromatic, penetrating and grateful, in some degree resembling camphor; and the taste pungent, warm, glowing and bitterish, followed by a sensation of coldness when air is drawn in the mouth. It gives out its properties to alcohol and partly to water. It contains volatile oil, a bitter principle, resin, tannic acid and woody fibre. The oil can be obtained separate by distillation. It is colorless, but becomes yellowish or even reddish by age. It has a powerful aromatic odor, and an extremely pungent taste. The camphor it contains is isomeric with the oil.

Peppermint is employed in medicine for several purposes. It is stomachic, stimulant, antispasmodic and carminative. It is chiefly used to allay nausea and griping, to relieve flatulent colic, and in hysteria; or as a vehicle to cover the nauseous taste of other medicines. It is, however, to many palates extremely disagreeable. The fresh herb, bruised and applied over the epigastrium, often allays sick stomach, and is especially useful in the cholera of children. The medicine may be given in infusion, but the volatile oil, either alone or in some state of preparation, is generally and almost always preferred.
MENTHA PIPERITA.

The following are the principal preparations of this medicine with their uses.

Aqua Menthae Piperitæ. Take of peppermint a pound and a half, pour over it as much water as will prevent empyreuma during the distillation. Distil a gallon.

Peppermint water has the flavor and taste of the plant in a very considerable degree. It is sometimes used alone as a carminative and stimulant, but more generally for the purpose of covering the taste of other medicines.

Spiritus Menthae Piperitæ. Take of oil of peppermint, by weight, six scruples and a half; proof spirit four pints and a half; water, sufficient to prevent empyreuma. Add the spirits to the oil and pour on them as much water as will prevent empyreuma, then distil with a slow fire one gallon.

The spirit of peppermint is a useful carminative in nausea and flatulence, and as an adjunct to purgative remedies. This spirit has no advantage over a simple solution of the oil in alcohol, and may therefore with great propriety be substituted for it. The solution is usually kept in the shops under the name of essence of peppermint.

Oleum Menthae Piperitæ. Obtained by submitting the fresh herb to distillation with water. Its odor is strong and its taste very pungent, but at the same time it impresses a sensation of coldness. The vapor of it applied to the eye causes a feeling of coldness. Its color is greenish-yellow or nearly colorless, but it becomes white when exposed to the light, and reddish by age. Four pounds of the recent plant yield from one drachm and a half to three drachms and a half of the oil. The product is generally less than one per cent. In a warm, dry and favorable season the produce of a given quantity of the fresh herb is double that which it yields in a wet and cold season.

Oil of peppermint is a stimulant and carminative, and is used occasionally as an antispasmodic. It is a common domestic remedy in cramp of the stomach, flatulent colic and anorexia, and as a corrigent or adjuvant of other medicines. The dose is from one to three drops, and is most conveniently given rubbed up with sugar and then dissolved in water.

Besides the above there are other popular preparations of peppermint extensively used. Infusum Menthae Piperitæ, Peppermint tea; Rotulae Menthae Piperitæ, Peppermint drops: The Liqueur sold at the spirit shops as mint or peppermint, is used as a cordial.
No. 55.

Convolvulus Scammonia.
Scammony.
CONVOLVULACEÆ.

Bindweeds.

No. 55.

CONVOLVULUS SCAMMONTIA.

Scammony. Syrian Bindweed.

Place—Europe.

Quality—Acrid, bitter, nauseous.

Power—Purgative.

Use—The root in costive habits.

BOTANICAL ANALYSIS.

Natural Order. Campanaceæ—L. Convolvulaceæ—J.

Class V. Pentandria. Order Monogynia.

Genus. CONVOLVULUS.

From the Lat. Convolvere, to entwine from the habit. A large genus of twining or prostrate herbs.

Synonyms.—Scammonee (F.), Scamonium von Aleppo (Ger.), Het Scammo-

neum (Dutch), Scammonia (L.), Escamonea (S. & P.), Sulimunja (H. & Arab.)

THE ESSENTIAL CHARACTERS.

Calyx. Sepals five, much imbricated, usually united at base, persistent.

Corolla. Regular. Limb five-lobed or entire, plaited and twist-

ed in aestivation.

Stamens. Five, inserted into the base of the corolla, and alternate with its lobes.

Ovary. Two—four-celled, free. Styles united into one.

Fruit. Capsule, two—four-celled, valves with septrifragal de-

hiscence.
CONVOLVULUS SCAMMONIA.

Translucent. It is pulverulent and the powder has a light gray color. Its specific gravity is 1.235 (Brisson). When it is of a dark color, heavy and splintery, it should be rejected. When triturated with water, nearly one fourth of it is dissolved, and the solution appears slightly mucilaginous, opaque, and of a greenish gray color. This solution is not affected by alcohol, solutions of superacetate and acetate of lead and sulphate of iron, nor precipitated by the acids, but with sulphuric acid it gives out the odor of vinegar. Solution of ammonia does not alter it, but that of potassa occasions a yellowish precipitate, which is quickly redissolved on the addition of an acid. Ether takes up two parts in ten of Scammony, and when evaporated leaves a brownish semi-transparent resin. Alcohol dissolves two-thirds of its weight, but proof spirit is its best menstruum, taking up the whole except the impurities. Aleppo Scammony contains, according to Bouillon, La Grange and Vogel, 0.60 of resin, 0.20 of extractive, 0.03 of gum, and 0.35 of impurities. Smyrna Scammony contains 0.29 of resin, 0.08 of gum, 0.05 of extractive, and 0.58 of impurities. When these impurities consist of flour, sand or ashes, they may be detected by dissolving the sample in proof spirit, as they sink and remain undisolved; but Scammony is sometimes also adulterated with the expressed juice of Cynanchum monspeliacum, and a fictitious Scammony is also sold for the real, consisting of jalap, senna, manna, gamboge and ivory black.

Scammony is a drastic cathartic, operating in general quickly and powerfully. The purest is that which is most active and soluble. The ancients were acquainted with its purgative qualities and also employed it as an external application for removing hard tumors, itch, scurf, and fixed pains, but for the latter purposes it is now seldom or never used. It is a good purgative in the torpid state of the intestines, in leucophlegmatic, hypochondriacal and maniacal subjects; in worm cases and the slimy state of the bowels to which children are subject; and as a hydragogue cathartic in dropsy. Scammony has been regarded by some as a cathartic of so irritating a nature as to require to be corrected by exposing it to the fumes of sulphur, defecating it with lemon-juice and other acids, and uniting it with demulcent mucilages; but except in an inflamed or very irritable state of the bowels, it is a safe and efficacious purgative. It is, however, apt to grippe, on which account it is generally united with an aromatic, or a drop of some essential oil.

The dose is from five to fifteen grains, whether given in powder, as a bolus, or in the form of mixture triturated with almonds, gum, or extract of liquorice and water.
No. 56.

DATURA STRAMONIUM.

Thorn apple.
SOLANACEÆ.

Nightshades.

No. 56.

Datura stramonium.

Thorn Apple. Jamestown weed.

Place—America.
Quality—Fœtid, nauseous.
Power—Narcotic, acrid.
Use—Asthma, chronic pains, &c.

BOTANICAL ANALYSIS.

Natural Order. Luridæ—L. Solanaceæ—J.
Class V. Pentandria. Order Monogynia.

Genus. Datura.

An alteration of the Arabic name Tatorah. Forskahl. Tatula is altered from Datula, a name given to the Datura by the Turks and Persians.

Synonymes.—Pomme epineuse, Stramonie (F.), Der stechapfel (Ger.), Door-nappel (Dutch), Stramonio (L.), Estramonio (Sp.), Estramonia (P.), Durman (Russ.)

THE ESSENTIAL CHARACTERS.

Calyx. Sepals four—five, more or less united, mostly persistent.
Corolla. Regular. Limb four—five cleft, plaited, in aestivation, deciduous.
Stamens. Four—five, (sometimes one abortive), inserted on the corolla, alternate with its segments. Anthers bursting longitudinally, rarely by terminal pores.
Datura Stramonium.

Ovary. Free (superior) two-celled, (four-celled in Datura,) with the placenta in the axis. Styles and Stigmas united into one.

Fruit. A capsule or berry.

The Secondary Characters.

Calyx tubular, angled, caduceous, with a permanent orbicular base. Corol funnel-form, plaited. Capsule four-valved, two-celled, and each cell half divided, generally thorny.

The Specific Characters.

Pericarps spinose, erect, ovate. Leaves ovate, glabrous, angular, dentate.

The Artificial Characters.

Natural History.

It is very uncertain where the Datura was originally native. It certainly appears indigenous to America, but it was first introduced into England from Constantinople in Gerard's time, and by him "dispersed through the land." Professor Martyn says, "that in the earth brought with plants from various parts of this extensive continent, they are sure to have the Thorn apple come up." It is an erratic and wandering plant, common to all parts of the world, and spreading with the utmost facility. It is probably a native of Persia or India, and has spread to Europe, Africa and America. It has been supposed to be a native of North America, but it has appeared there only since its colonization. The Indians call it the White man's plant. In the Western States it has sprung up only
since their settlement, and probably from seeds carried thither. The
plant has handsome flowers, sometimes four inches long. It has
been cultivated for its beautiful blossoms, although it has an unplea-
sant narcotic smell. Children yet use them for garlands by forming
strings of the flowers within each other.

Datura Stramonium is now become a noxious weed, infesting
fields, &c. It is commonly met with near houses, along the roads,
in commons, old fields, &c., and never in woods or mountains. It
is found in all the States, also in Canada, Mexico, and in South
America. In the Southern States it blossoms from May to Septem-
ber, and in the Northern States from July to October. It rises about
two feet in height, with a round stem, branching and dichotomous
above, spreading and leafy. The leaves are large, rising from the
forks of the stem on long round petioles, of a dark green color on
the upper surface and pale beneath, irregularly ovate-triangular in
figure, sinuated and unequal at the base. The flowers are large
axillary and solitary, on short erect peduncles. The calyx is about
two inches in length, tubular, pentangular and five-toothed. The
corolla longer, of a white color, funnel-shaped and plaited, with the
filaments which support oblong, flat anthers adhering to the tube,
and the style filiform, terminated with a thick club-shaped stigma.
When the corolla and its included parts drop, the calyx also separ-
ates except the base, which remains, and becoming reflex enlarges
with the receptacle as a support to the fruit. The fruit is a large,
fleshy, ovate-roundish four-cornered capsule, beset with sharp, awl-
shaped spines, four-celled at the base, two-celled at the apex, and
containing a great number of reniform compressed seeds.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

Datura Stramonium has a narcotic, foetid odor, producing
headache; a bitterish nauseous taste, and gives to the saliva a deep
green tinge when chewed. The analysis of *Promnitz* gives as the
components of Thorn apple, gummy extractive 58, extractive 6,
chlorophylle 64, albumen 15, resin 12, and phosphate of lime and
magnesia 23 = 178 parts. According to Wedenberg (*Dissertatio
Medica de Stramonii usa, &c., Upsal, 4to.*) it contains gum and
resin, a volatile matter (carbonate of ammonia), and a narcotic
principle which has lately been ascertained to be an alkaline salt.
It is obtained from the seeds, in which it is combined with malic acid,
and named *Daturine*. It is nearly insoluble in water and in cold
alcohol, but boiling alcohol dissolves it, and in cooling lets it fall in
DATURA STRAMONIUM.

floculi. It is crystallized with difficulty, but has been obtained in quadrangular crystals. It forms neutral salts with the acids. The medicinal virtues of the herb are extracted both by water and alcohol. The watery infusion is transparent; with a very pale yellow hue, which is dissipated by acids, but very much deepened by the alkalies. It throws down whitish precipitates with acetate and superacetate of lead, and a black precipitate with nitrate of silver. Solution of sulphate of iron strikes a deep olive color, and muriate of mercury renders it milky, but neither is precipitated till after a very considerable time.

Thorn apple is a narcotic and stimulant. Baron Stoerck first recommended it as an internal remedy in cases of mania and epilepsy. Numerous cases have been recorded in which it has proved a benefit in these diseases, but the general result of the practice has not been satisfactory, and it is now considered rather as useful in allaying the excessive mobility of the system than as tending to the absolute cure of the complaint. Its good effects have been more marked in asthma, especially of the spasmodic kind, used as an inhalation by smoking or otherwise. It requires, however, much caution in its use. Dr. Bigelow has given some very judicious remarks on its employment, and others may be found in Dr. Dunglison's practice of medicine. Dr. Barton regards it as a remedy of great efficacy. He found that when the dose of the dried herb was gradually increased to thirty grains, it dilated the pupil, and produced paralysis of the eyelids, effects which were removed by a blister. Dr. Marcet, who experimented largely with this remedy, observes that many kinds of painful diseases were more relieved by it when used internally than by any other narcotic; that its effects on the bowels were rather relaxing than astringent, and that the great objection to its employment was the occasional production of disagreeable nervous symptoms.

Cataplasms of the bruised fresh leaves have been successfully used as an application to inflammatory tumors and for discussing masses of indurated milk in the breasts of nursing women. An ointment made with the powdered leaves has afforded much relief in haemorrhoids and painful ulcers. This ointment has also been recommended in nymphomania to lessen venereal excitement.

All parts of the plant are used, but the seeds, from containing most Datura, are the most powerful. The dose of the powdered leaves is one grain; of the seeds, half a grain; of the extract of the seeds, a quarter of a grain; that from the leaves, a grain; of the tincture, ten to twenty drops—all to be gradually increased if required.
No. 57.
COPTIS TRIFOLIA.
Gold-Thread.
RANUNCULACEÆ.

Crowfoots.

No. 57.

COPTIS TRIFOLIA.

Goldthread. Mouth root.

Place—Europe, America.
Quality—Bitter.
Power—Stomachic, tonic.
Use—Dyspepsia, debility, promoting digestion.

BOTANICAL ANALYSIS.

Natural Order. Multisiliquae—L. Ranunculaceae—J.

Class XIII. Polyandria. Order Polygynia.

Genus. COPTIS.

From the Greek Kopto, to cut, from the numerous divisions of the leaves, appearing as if cut.

Synonyms.

THE ESSENTIAL CHARACTERS.

Calyx. Sepals mostly five, sometimes three, four or six, mostly deciduous and imbricated in aestivation.
Corolla. Petals three—fifteen, hypogynous, sometimes irregular or wanting.
Stamens. Indefinite, numerous, distinct, hypogynous. Anthers adnate or innate.
COPTIS TRIFOLIA.

Ovary. Numerous, rarely solitary or few, distinct, seated on the torus.

Fruit. Either dry achenia, or baccate, or follicular. Embryo minute at the base, of horn or fleshy albumen.

THE SECONDARY CHARACTERS.

Scape one-flowered. Leaves ternate. Roots long, filiform, golden yellow.

THE SPECIFIC CHARACTERS.

Coptis Trifolia. Leaves three-foliate. Scape one-flowered. Petals much smaller than the sepals.

Petals five or six, caducous. Nectaries small, five or six, cowled. Capsules oblong, five—eight, stiped, stellate, beaked, many-seeded. Sometimes the nectaries are mistaken for corols, and the corols for calyces.

THE ARTIFICIAL CHARACTERS.

Class Polyandria. Stamens twenty or more, arising from the receptacle (hypogynous). Order Polygynia. Leaves never peltate. Herbs with acrid colorless juice.

NATURAL HISTORY.

Goldthread inhabits the northern regions of this continent and of Asia and Europe. It is found in Greenland and Iceland. The plant is an agreeable and pretty evergreen, and bears considerable resemblance to the strawberry in size and general aspect. It delights in the dark shady swamps and cold morasses of northern latitudes and Alpine regions, and abounds in Canada and in the hilly districts of New England. Its most southern limits are New England, New York, and the shores of Lake Erie. Its blossoms appear in May, and it continues in flower during the summer. It flourishes best in peat soil, and is increased by dividing the roots.

Coptis Trifolia has a perennial, extensively creeping root, the slenderness and bright yellow color of which have given rise to the name Goldthread, by which the plant is universally and commonly known. The caudex, from which the petioles and flower stems
COPTIS TRIFOLIA.

proceed, is invested with ovate, acuminate, yellowish, imbricated scales. The leaves, which stand in long slender footstalks, are ternate, with firm rounded or obovate sessile leaflets having an acute base, a lobed and acuminately crenate margin, and a smooth veined surface. The scape or flower-stem is slender, round, rather longer than the leaves, and surmounted by one small white flower, with a minute mucronate bract beneath it. The petals are oblong, concave, and of a white color, the nectaries inversely conical, hollow and yellow at the top. The stamens have capillary filaments and globose anthers. The germs are from five to eight, stipitate, oblong, compressed, and surmounted by short recurved styles with acute stigmas. The capsules, which diverge in a star-like form, are pedicelled, compressed, beaked, and contain numerous black seeds attached to the inner side.

Another species of Coptis has been described by Dr. Wallich, under the name of Coptis Teeta, peculiar to India, and grows in the mountainous regions bordering on Assam, and very much esteemed among the natives.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

COPTIS TRIFOLIA possesses the tonic properties of the simple bitters, and is very analogous in its action to the other plants of the same description and belonging to the same natural family. Dried goldthread, as brought into the market, is in loosely matted masses, consisting of the long, thread-like orange-yellow roots, frequently interlaced and mingled with the leaves and stems of the plant. It is without smell and has a purely bitter taste, unattended with aroma or astringency. It imparts its bitterness and yellow color to water and alcohol, but most perfectly to the latter, with which it forms a bright yellow color. Its virtues appear to depend on a bitter extractive matter which is precipitated by nitrate of silver and acetate of lead. It affords no evidence of containing either resin, gum or tannin.

Goldthread is a simple tonic bitter, bearing a close resemblance to quassia in its mode of action, and applicable to all cases in which that medicine is prescribed; though not as powerful, it is far more palatable. From its higher price, however, it is not likely to come into general use as a substitute. It has long been popularly employed as a remedy in autumnal intermittent and remittent fevers, and has found much favor with the medical profession in the latter of these complaints. The state of the fever to which it is particularly applicable, is that which exists in the intervals between the
paroxysms, when the remission is such as to call for the use of tonics, but is not sufficiently decided to justify a resort to the preparations of Peruvian bark. It is also occasionally useful during the progress of a slow convalescence by promoting appetite and invigorating the digestive function, and may be employed for the same purpose in dyspepsia and diseases of debility. From this statement it will be seen that Coptis Trifolia possesses in a very considerable degree the tonic powers which characterize the simple bitters. Its use has a tendency to excite the appetite, invigorate the powers of digestion, moderately increase the temperature of the body and the force of the circulation, and act in general as a good corroborant of the system. It may consequently be used in all cases of disease dependent on pure debility of the digestive organs, or requiring a general tonic impression. The condition of the stomach and of the system generally, however, and not of the particular disease, must be taken into consideration in prescribing it; and let it be remembered, there is scarcely a single complaint in which alone it can be advantageously administered under all circumstances. It may be proper too to mention that the article under consideration is not as powerful as gentian, quassia and other pure bitters.

In the Eastern States Goldthread is considerably employed and held in high estimation as a local application in aphthous and other ulcerations of the mouth; for this purpose it is frequently macerated or chewed in the mouth; but the principal use made of it is for a gargle, particularly for children. Its astringent properties render it peculiarly serviceable when used with honey and borax. It may be substituted for golden seal or barberry. Dr. Bigelow, however, is of opinion that its efficacy is inert, and being devoid of astringency, has been overrated, and that probably it has no other virtues in these complaints than such as are common to all the simple bitters; but notwithstanding this authority, it has the concurrent testimony of very many respectable Physicians and Practitioners in its favor.

All parts of the plant possess more or less bitterness, but this property is more intense in the root, which is the only officinal part. The roots ought to be collected in the summer; they are easily dried, but not so easily reduced to powder.

It may be given internally in substance, infusion or tincture. The dose of the powder is from ten to thirty grains; that of the tincture prepared by macerating an ounce of the root in a pint of diluted alcohol, one fluid drachm.

The other species of Coptis peculiar to India is much esteemed by the natives as a tonic and a stomachic.
LILIACEE.

Lilium candidum.

BOTANICAL ANALYSIS.

Flower.—Stem 1, Sepals 3, Petals 6, Stamens 6, Ovary 2, Style 1, Stigma 3.

 Uses.—Emollient, anodyne. Used in epilepsy, dropsy, and consumptive diseases.

FRUIT. Capsule or fleshy, with several or many beaked Seeds. Albumen fleshy.
three spoonsful, both for a preservative and a cure." Fr. Hoffn.

The bulb of the White Lily, which consists of imbricated fleshy scales, is without odor, but has a peculiar disagreeable somewhat bitter and mucilaginous taste. It contains much mucilage and a small proportion of an acrid principle, which is dissipated or destroyed by roasting or boiling. In the recent state it has been employed with advantage in dropsy. Boiled with water or milk it forms a good emollient cataplasm; more used in domestic and popular, than in the regular practice.

"Gerard informs us that William Goderus, Serjeant-Surgeon to Queen Elizabeth of England, found by experience that the root of White Lily stamped and strained with white wine and given to drink for three or four days successively, expelled the poison of the pestilence and caused it to break out in blisters on the skin. That the same learned Gentleman had cured many of the dropsy with the juice of it, tempered with barley meal and baked in cakes, taking care that his patients did eat of it for a month or six weeks with their meat, and no other bread during that time."

Vegetation, when assisted by human contrivances, is the best possible means of improving the air and rendering a country fitter for the abode of mankind. Cultivation removes the corruptive and decaying vegetables, and by turning them under the earth, makes them nourish the ground instead of poison the air. It is well known that many places, at one time deadly, are now healthy, not so much from the care of the new-comer in avoiding the remote causes of disease, as from the greater number of these causes being removed by cultivation. Wherever Cerealia is capable of growing, that country is or by human labor may be made healthy. Cultivation likewise always renders a country warmer; for a large quantity of vegetable matter is raised on a given space, and vegetable life is but the conversion of certain gases, oxygen, hydrogen, azote and carbonic acid into solid matter, and a change of form—an alteration from a rarer to a denser state—must always be accompanied by the extrication of heat. What is it that makes living vegetables so difficult of being frozen, compared to dead ones, but this constant formation and existence of caloric in them. As an example of the evolution of heat by the process of vegetation, it may be mentioned that on looking into a wood in spring we shall find the small plants more advanced in size and strength than those of the plains. In the woods small berries are found much sooner ripe than in the cleared lands.
No. 59.

APOCYNUM ANDROSENFOLIUM.

Dogsbane, Bitter-root, Milk-weed.
APOCYNACEÆ.

Dogbanes.

No. 59.

APOCYNUM ANDROSEMIIFOLIUM.

Place—America.
Quality—Bitter.
Power—Tonic, vermifuge.
Use—Dropsy, intermittent fever, syphilis.

BOTANICAL ANALYSIS.

Natural Order. Contortæ—L. Apocynaceæ—J.
Class V. Pentandria. Order Digynia.

Genus. APOCYNUM.

From the Greek apo, away, and kunos, a dog; that is to say, a plant from which dogs must be driven. Pliny says his Apocynum is mortal to them.

Synonyms.—L’apocin (Fr.), Der hundekohl (Ger.), Hondsdood (Dutch), Apocino (It.), Aposino (Sp.), Hundefod (Dan.)

THE ESSENTIAL CHARACTERS.

Calyx. Sepals five, united at base, persistent.
Corolla. Five-lobed, regular, twisted in aestivation, deciduous.
Stamens. Five, arising from the corolla and alternate with its segments. Filaments distinct. Anthers two-celled, opening lengthwise, sometimes slightly connected. Pollen granular, globose or five-lobed, immediately applied to the stigma.
Ovary. Two, distinct or rarely united. Styles distinct or united. Stigmas united into one, which is common to both styles.
dead in that confined situation after unavailing struggles. Whence one of the popular names of this plant, Catchfly.

The disease in which this plant has been found to be most useful is Dropsy; in this, from the concurrent testimony of several eminent Physicians and Practitioners, its remedial powers are decided, sometimes operating as a hydragogue purgative, and at others causing the most profuse discharges of urine, and thus relieving the tissues from their morbid burden. Dr. Knapp gives the details of some cases of intermittent fever and pneumonic affections, in which he derived much benefit from this remedy employed as a diaphoretic.

When given as an emetic, the powder is to be preferred, in doses of fifteen to thirty grains; where its hydragogue or diuretic effects are desired, the best form is in decoction, made by boiling an ounce of the root in a pint of water; the dose is about a wineglass full two or three times a day. The watery extract will act on the bowels in doses of from three to five grains, but is not as efficient as the decoction.

Professor A. Curtis, M.D., of Ohio, publishes the following as the medical properties of the Apocynum Androsæmifolium.

"Bitter, antispasmodic, relaxant, aperient, stimulant,—in one word, Depurating; hence, as it enables the system to clear itself and recover its tone, many have called it directly tonic. When given in large doses on a foul stomach, it vomits; in small doses, with lobelia seed, cayenne, nervine, and rolled into pills with boneset, butternut, or blackroot extract, it is one of the best articles in our practice to produce a healthy action of the liver and bowels, to break the chills in intermittents, and as one ingredient in spice bitters, woman's friend, conserve of hollyhock, &c., to be used after a course, it has few superiors. Combined with lobelia seed and cypripedium, rolled in boneset extract into a pill and given every hour, it makes an admirable compound to break up congestions, costiveness, &c., especially when aided by the bath. Used with polemonium, catnip, or sage and pennyroyal, it is an excellent hydragogue in dropsy. Even alone it has cured many cases that had defied the skill of the mineral school. Used alone, or with a little cayenne, it acts pretty thoroughly as a cathartic."

For further information see Rec. vol. vi. 264, 265.

Besides the value of this plant as a therapeutic agent, it is entitled to notice for its use in the arts. The bark furnishes a fibre resembling hemp, but of a white color and superior in strength and durability, and a decoction of the plant affords a permanent brown or black dye, according to the mordant used.
No. 60.
GENTIANA LUTEA.
GENTIANACEÆ.

The Gentian Tribe.

No. 60.

GENTIANA LUTEA.

Yellow Gentian.

Place—Europe.
Quality—Bitter.
Power—Tonic, stomachic, anthelmintic.
Use—Rheumatism, gout, jaundice, wastings, &c.

BOTANICAL ANALYSIS.

Natural Order. Stellata—L. Gentianaceæ—J.
Class V. Pentandria. Order Digynia.

Genus. GENTIANA.

From Gentius, king of Illyria, who according to Pliny first discovered the tonic virtues of plants of this genus.

Synonymes.—La gentianè (F.), Der enzian (Ger.), Gentiaan (Dutch), La gentziana (I.), La jenciana (Sp.), Goretschafka (Russ.)

THE ESSENTIAL CHARACTERS:

Calyx. Sepals four—five—ten, united at base, persistent.
Corolla. Usually regular. Limb divided into as many lobes as there are sepals, mostly twisted in aestivation.
Stamens. Issuing from the tube of the corolla, as many as its lobes, and alternate with them.
GENTIANA LUTEA.

Ovary. One-celled, sometimes rendered apparently two-celled by the introflèxed placentae. Style united into one or wanting: Stigma one—two.

Fruit. Capsule, many-seeded.

Seeds. Small. Embryo straight, with fleshy albumen.

Flowers conspicuous, terminal or axillary, regular, or sometimes irregular.

THE SECONDARY CHARACTERS.

Gentiana. Calyx, five—four-parted or cleft. Corolla marcescent, tubular at base. Limb, four—five-parted. Segments either spreading, erect, or convergent, often furnished with intermediate, plicate folds. Stamens five—four, inserted in the corolla tube. Stigmas two, revolute or erect: Style short or wanting. Capsule two-valved, one-celled, many-seeded.

Calyx four or five cleft. Corol with a tubular base, bell-form, without pores, four or five cleft. Stigmas two, sub-sessile. Capsule one-celled, oblong. Colu-

mellas two, longitudinal. Stamens but four when the divisions of corol are four.

THE SPECIFIC CHARACTERS.

Leaves, broad-ovate, nerved. Corols, about five-cleft, wheel-form, whorled:

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

Gentian is said to owe its name and introduction into medical use to Gentius, King of Illyria, who was vanquished by the Romans more than one hundred and fifty years before Christ. It is therefore not noticed by either Hippocrates or Theophrastus, but is mentioned by Dioscorides and by Pliny.

Yellow Gentian is among the most remarkable of the species which compose this genus, both for its beauty and great comparative size. It is a perennial plant found growing on the Alps of
GENTIANA EUTEA.

Switzerland and Austria, the Apennines, the Pyrenees and other mountainous or elevated regions of Europe. In Switzerland and Germany it occupies extensive tracts of ground untouched by any cattle. The root is thick, long and cylindrical. The lower leaves are petiolate, large, spear-shaped, stiff and having five large veins on the back, plaited and of a yellowish green color; those of the stem are concave, smooth and egg-shaped, sessile and almost embracing the stem, which rises three or four feet in height. The flowers are in whorls at the upper joints, large, yellow, peduncled and beautiful. The calyx, which is a membranous, deciduous spathe, bursts on the side when the flower opens. The corolla is rotated, divided into five or eight narrow spreading segments, elliptical and speckled with many thick dots. The filaments are shorter than the corolla, and furnished with long, erect anthers. The germen is conical, crowned with two sessile, reflected stigmas, and becomes a conical capsule, which contains numerous small seeds.

The plant is very handsome, and often cultivated both for ornament and for the sake of its powerfully tonic virtues. Most of the species succeed well in a light rich soil, but a few require peat, and some must be grown in pots to be protected by frames in winter. Some of them may be increased by dividing at the root, but most of them seed freely. The seeds should be sown as soon as ripe, they will then quickly vegetate, but if left till spring before they are sown, they will not come up till the second year. (Bot. Cult. 371.)

Gentian roots are imported from Germany; they are in pieces of various dimensions and shape, usually of considerable length, consisting sometimes of longitudinal slices, sometimes of the root cut transversely, twisted, wrinkled externally, sometimes marked with close transverse rings of a grayish-brown color on the outside, yellowish or reddish within, and of a soft spongy texture.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

Gentian roots have no particular odor, and the taste is intensely bitter without being nauseous. When cut transversely the pieces exhibit a yellow maculated heart, with thick bark verging to brown. The sensible qualities of Gentian root are extracted by ether, alcohol and water. The two former extract a resin and a bitter extractive matter, and the latter some part of these and a considerable quantity of mucilage also, which occasions the infusion often to become ropy. Diluted alcohol is its proper menstruum. In the bitter extractive the virtues of the plant seem to reside. According to the
analysis of M. M. Henry, sen., and Caventon, Gentian contains an
odorous, very fleeting principle, a yellow bitter principle, which they
named *Gentianin*, a substance resembling birdlime, a greenish oily
matter, a free organic acid, a saccharine principle, gum, a tawny
coloring matter and woody fibre. *Journ. de Physique*, vol. 84, 245.

Professor Dulk of Konigsberg gives the following process for iso-
lating the bitter principle. The alcoholic extract is macerated in
water, and the solution, having been subjected to the vinous fer-
m entation in order to separate the sugar, is treated first with ace-
tate of lead, and then after filtration with subacetate of lead and a
very little ammonia, in order to precipitate the combination of the
vegetable principle with oxide of lead, care being taken not to use
too much ammonia, lest by its stronger basic powers it should sepa-
r ate the vegetable principle from the oxide. The precipitate thus
obtained is washed with a little water, then mixed with a large pro-
portion of the same fluid and decomposed by hydro-sulphuric acid.
The liquid having been filtered, is evaporated with a gentle heat to
dryness and the residue treated with alcohol of 0.820. The alco-
holic solution being evaporated yields the bitter principle, which
ought to receive the name of *Gentianin*. It is a brownish yellow,
uncrystallizable substance, having in a high degree the very bitter
taste of the root. It is almost insoluble in absolute alcohol, but sol-
luble in ordinary alcohol, and very soluble in water. It reddens lit-
mus, and appears to possess acid properties.

Gentian root is tonic, stomachic, and in large doses aperient. In
very large doses it is apt to load and oppress the stomach, to irritate
the bowels, and even to occasion nausea and vomiting. Its use as a
stomachic bitter is of a very antient date and is still perhaps the most
generally employed of this class of medicines. Many of the com-
plex preparations handed down from the Greeks and Arabians con-
tain it among their ingredients, and it enters into most of the stom-
achic combinations employed in modern practice. It may be used
in all cases of disease dependent on pure debility of the digestive
organs or requiring a general tonic impression. It has been found
beneficial in dyspepsia, gout, hysteria and jaundice. It is some-
times joined with the cinchona in intermittents, and according to
the circumstances of the cases for which it is prescribed direct, it may
be combined with orange-peel, chalybeates, aromatics, squill, min-
eral acids and neutral salts. On account of its antiseptic effects on
dead animal matter its powder has been used externally as an ap-
plication to malignant and sloughing ulcers. The forms in which
it is generally given are infusion and tincture.
No. 61
SPICELIA MARILANDICA
Pink-root Worm-grass &c.
RUBIACEÆ.

Madderworts.

No. 61.

SPIGELIA MARYLANDICA.

Pink-root. Worm-grass.

Place—United States.
Quality—Foetid.
Power—Anthelmintic, narcotic.
Use—Worms, intermittent fevers, &c.

BOTANICAL ANALYSIS.

Natural Order. Stellatae—L. Gentianæ—J.
Class V. Pentandria. Order Monogynia.

Genus. SPIGELIA.

Named after Adrian Spigelius, a celebrated Professor of Anatomy at Padua; author of Isagoge in rem Herbarium, who died in 1625.

Synonyms.—Spigelie de Maryland (F.), Spigelie (Ger.), Spigelia (L.)

THE ESSENTIAL CHARACTERS.

Calyx. Tube more or less adherent, (superior or half superior,) Limb four—five cleft.
Corolla. Regular, inserted upon the calyx tube, and of the same number of divisions.
Stamens. Inserted upon the tube of the corolla, equal in number and alternate with its segments.
pupil, spasmodic motions of the muscles of the eyes, and even convulsions. These symptoms, following the administration of Spigelia, have been thought to depend either on the roots of some other plant gathered with the Pink-root, or on some parasitic vine that had attached itself to it. These suggestions, however, have both been proved to be erroneous, and that the root itself is narcotic.

The use of Spigelia has not been confined to the expulsion of worms. As early as 1763, Dr. Garden, in correspondence with Dr. Hope, states that he had given it with great success in febrile attacks, apparently arising from a disordered condition of the stomach and bowels; this is also confirmed by Dr. Ives, and in fact almost every practitioner must have met with proofs of its efficacy in those febrile complaints in children, arising from irritation of the bowels from any cause. Rafinesque mentions that it is used among the Osage Indians as a sudorific and sedative in acute diseases.

As an anthelmintic, however, it is more generally prescribed than any other article in this country, and in most cases with unequivocal success, and without the production of any unpleasant symptoms. It may be given in powder or infusion, the dose of the first of which for children is from ten to twenty grains. The infusion is by far the best mode of administration; this is made with an ounce of the root to a pint of water, the dose of which is from an ounce to two ounces for a child. One of the best methods is to give a full dose at bed time and an active purgative in the morning, as this way any narcotic symptoms it may display do not cause uneasiness.

The most general plan is to give it in combination, especially with Senna; this forms a well known nostrum called Worm-tea, for which there are several recipes, differing only in the quantities of the ingredients. It usually purges actively and does not excite narcotic symptoms. The syrup is also an efficacious form of preparation.

In the ordinary dose (one or two drachms for adults) Spigelia has very little sensible effect on the system, though it may act efficaciously as an anthelmintic. In larger doses it appears to operate as an irritant to the gastro-intestinal canal and gives rise to purging and sometimes to vomiting, though its effects in this way are very uncertain. In poisonous doses it operates as a cerebro-spinant or narcotic, giving rise to violent narcotic symptoms already noticed. The narcotic effects are said to be less apt to occur when the medicine purges, and to be altogether obviated by combining it with cathartics. The danger from its employment cannot be great, as it is in very general use both in regular and domestic practice, and serious consequences at present are unknown.
N° 62

VITIS VINIFERA.
Common Wine Grape.
VITACEÆ.

Grape-vines.

No. 62.

VITIS VINIFERA.

Common Wine Grape.

Place—All the temperate parts of the World.
Quality—Acrid, rather styptic.
Power—Sub-astringent.
Use—Intermittent and putrid fevers, and as a corroborant.

BOTANICAL ANALYSIS.

Natural Order. Hederaceæ—L. Vitaceæ—J.

Class V. Pentandro. Order Monogynia.

Genus. VITIS.

From Lat. Vīsc, to bind, because its tendrils take hold of the neighboring plants. Or from the Celtic Gwyd, a tree or shrub. The G being suppressed in pronunciation according to the usage of Celtic nations, the Latins have made of it vīs and the English vine.

Synonyms.—La vigné (F.), Der weinstock (Ger.), Wyngaard (Dutch), Vite (I.), Vid (S.), Anōb (Arab.), Winograd (Russ.), Winna macica (Pol.)

THE ESSENTIAL CHARACTERS.

Calyx. Minute, nearly entire or five-toothed.
Corolla. Petals four—five, inserted on the outside of the disk, valvate and inflexed in aestivation, often cohering above and caducous.
Stamens. Four—five, opposite the petals, inserted on the disk.
Ovary. Superior, two-celled. Style one, very short.
VITIS VINIFERA.

Fruit. A berry, globose, pulpy.

THE SECONDARY CHARACTERS.

Vitis. Petals deciduous, cohering at the top or distinct and spreading. Ovary partly enclosed within the torus, two-celled. Cells two-ovuled. Stigma sessile, capitate. Berry one-celled, one—four-seeded.

THE SPECIFIC CHARACTERS.

Vitis Vinifera. Leaves cordate, sinnately five-lobed, glabrous or tomentose. Flowers all perfect.

Leaves sinnate-lobed, naked or downy.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

The Vine is a native of Armenia, Georgia, and the Levant; but it is now found in all the temperate regions of the earth, and is cultivated with care wherever its fruit can be brought to perfection. In France, the northern limit of the vine is stated to be 50° 20'. In Thuringia, Saxony and Siberia it is 51°, but towards the east it is lower, for though Hungary has much wine, yet Galicia has none, and in the southern parts of the Russian empire it ascends no higher than 48°. In America the vine is cultivated in the Southern States only, extending no farther north than 38°. The limit southward in the northern hemisphere is properly 15°, but in the high mountainous island of St. Thomas, on the coast of Guinea, in Abyssinia and in the Deccan, it is found almost under the equator. In the southern hemisphere, its southern limits are 37°. The greatest altitude, in 45° latitude, is 2160 feet, in the north of Switzerland, 1700 feet, on the Alpine range 2000 feet, in Madeira.
VITIS VINIFERA.

2030 feet, in Teneriffe 2500 feet, and on the Apennines and in Sicily 3000 feet.

Its culture is supposed to have been introduced from the east, where it was cultivated, and wine made from the fruit in the earliest ages. We are told that Noah, after coming out of the ark, planted a vineyard and drank of the wine and was drunken. Gen. ix. 20, 21. It extended into Italy about 600 years after the foundation of Rome, and thence to Burgundy in the time of the Antonines. It was introduced into Madeira from the island of Cyprus in the fifteenth century. In Great Britain the vine was cultivated before the year 731 when Bede finished his history, and although it was at one period brought to considerable perfection yet its cultivation is now chiefly confined to the garden, and as a dessert fruit.

The vine has a slender, twisted, climbing stem, covered with a rough, peeling, fibrous bark. The leaves are lobed and sinuated, serrated, and placed alternately on long footstalks. The flowers, which appear in June and July, are small and produced in clusters, attended by tendrils. The calyx is very minute. The petals are of a greenish-white color, adherent at their apices, and soon fall off, like a little cap, from the anthers which then spread and shed their pollen. The fruit is a succulent, globular berry, one-celled when ripe, naturally containing five seeds, but in general only two, which are hard and of an irregular form. There are many varieties of the vine; that which is called the Alexandrian Frontignac yields the most delicious grapes for eating, and the Syrian the largest bunches. This is supposed to be the sort of grape which the spies sent by Moses to examine Canaan, cut down at the brook Eshcol "a branch with one cluster of grapes, and they bare it between two upon a staff." Num. xiii. 23. Strabo relates that in Margiana bunches of grapes were produced two cubits or a yard long, and in some of the Archipelago islands they weigh from thirty to forty pounds. The Syrian grape has produced in England bunches weighing nineteen pounds and a half. There is a grape cultivated in Madeira as a dessert fruit, the clusters of which sometimes weigh twenty pounds.

The VITIS VINIFERA has become naturalized in most temperate climates, but is supposed not to be indigenous to the United States. No plant in the vegetable kingdom possesses more interesting attributes, is cultivated with greater care, or has been worse perverted or abused by mankind than the common vine. By cultivation it sports into endless varieties, differing in the form, color, size and flavor of the fruit, and in respect to the hardiness of its constitution. In New
VITIS VINIFERA.

England its cultivation is very confined, but there are extensive vineyards in the middle and western states for the production of wine.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The fruit of the vine when recent and fully ripe has an agreeable, cooling, sweet sub-acid taste. It contains besides water, sugar, mucilage and jelly, albumen, gluten, tannin, supertartrate of potassa, tartrate of lime, phosphate of magnesia, muriate of soda, sulphate of potassa, and tartaric, citric and malic acids; and a mucosaccharine principle which Chaptal and Proust regard as the constituent on which the fermentative process in bruised grapes depends.

At one time almost every part of the vine was recognized as officinal, and considered as possessed of remedial qualities, but now it is generally disused. The leaves, tendrils and young shoots contain malic and citric acid and some bitartrate of potash; they are now principally employed in wine countries to flavor vinegar. Grapes are cooling and antiseptic, and when eaten in large quantities diuretic and laxative. They are very useful in febrile diseases, particularly in bilious and putrid fevers, dysentery and all inflammatory affections. In Syria the juice of ripe grapes inspissated is used in great quantity in these diseases. Grapes have been strongly recommended as an article of common diet in phthisis, and they certainly contain much bland nutritious matter well fitted for phthisical habite.

Raisins are made from the varieties named the black raisin grape and the white raisin grape. They are cured in two methods, either by cutting the stalk of the bunches half through, when the grapes are nearly ripe, and leaving them suspended on the vine till their watery part be evaporated and the sun dries and candies them; or by gathering the grapes when they are fully ripe, and dipping them in a ley made of the ashes of the burnt tendrils, after which they are exposed to the sun to dry. Those cured in the first method are most esteemed.

Raisins differ from grapes chiefly in the quantity of saccharine matter being more abundant. They are more laxative than the fresh fruit, and are apt to prove flatulent when eaten in any considerable quantity. They are frequently used as an adjunct to some officinal preparations, but they add nothing to their efficacy.

The juice of the grape consists of principles, which when left to themselves for a short time undergo many important reactions, and their elements assume a new arrangement, forming two new compounds, wine and acetic acid.
Tridostem perfoliatum.
Feverwort, Wild Coffee, &c.
CAPRIFOLIACEÆ.

Honeysuckles.

No. 63.

TRIOSTEUM PERFOLIATUM.

Fever-wort. Wild coffee, &c.

Place—United States.
Quality—Bitter.
Power—Cathartic, tonic.
Use—Intermittent fevers, ague.

BOTANICAL ANALYSIS.

Natural Order. Aggregatae—L. Caprifoliaceae—J.
Class V. Pentandria. Order Monogynia.

Genus. TRIOSTEUM.

From Greek Treis, three, and Osteon, bone; three bones, on account of its three bony seeds.

Synonyms—

The Essential Characters:

Calyx. Adherent to the ovary (superior). The limb five-(rarely four) cleft or toothed.
Corolla. Tubular or rotate, regular or irregular.
Stamens. As many, or one less than as many as the lobes of the corolla, alternate with them, and inserted on the tube.
Ovary. Three-(rarely four or five) celled. Style one. Stigma one—four.
TRIOSTEUM PERFOLIATUM.

Fruit. Baccate, fleshy or dry, crowned with the persistent calyx lobes.

Seeds. Pendulous.

THE SECONDARY CHARACTERS.

Calyx permanent, of the length of the corol, five-cleft, with linear divisions. Corol tubular, five-lobed, sub-equal, gibbous at the base. Stigma capitate, sub-five-lobed. Berry three-celled, three-seeded.

THE SPECIFIC CHARACTERS.

TRIOSTEUM PERFOLIATUM. Leaves oval-acuminate, connate. Flowers axillary, verticillate or clustered.

Leaves oval, acuminate, connate, sub-pubescent beneath. Flowers sessile, whorled. Berries purple or yellow.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

The TRIOSTEUM PERFOLIATUM is a coarse unattractive plant, growing in rocky woods. It delights in rich limestone soil, on rocky or stony ground, preferring the shade, though it is frequently found in different situations. Its range is from New England to Carolina, and probably further. It flowers in June and July, and the seeds ripen in September.

The root is perennial, horizontal, about eighteen inches or two feet long, three-quarters of an inch in diameter, and fleshy, nearly of a uniform thickness from the extremity to within two or three inches of the origin of the stems. At this place it is contorted, tuberculated, or gibbous, and of a brownish color. The color of the horizontal caudex is yellow-ochre without and whitish internally,
TRIOSTEUM PERFOLIATUM.

and the fibres which proceed from it are of an ochroleucous hue. These are sometimes so large that they may be considered rather as branches or forks of the main root. The plant is from two to three feet high, and bushy, several stems arising from the same root. In favorable situations it sometimes attains four feet in height. The stems are about three-eighths of an inch in diameter, simple, stout, erect, cylindrical, hollow, pubescent and of a green color inversed with soft clammy hairs. The leaves are large, oblong oval, acuminate, somewhat panduriform towards their base, where they become suddenly narrowed. They are mostly connate until they approach the fourth pair from the top; these upper ones are more attenuated at their bases and rather amplexicaule. The under surface of all the leaves is covered with a soft dense bluish-white pubescence, conspicuously apparent on the middle rib and nerves. On their upper surface, though the pubescence cannot be observed readily by the naked eye, it is discernible by the glass more sparse than below. The nerves are numerous and commonly alternate as respects their union with the costa. The two uppermost pairs of leaves are small and closely convoluted while the plant is in flower. After the florescence is past, they are developed to the full size of the others, or become rather broader at their middle, and assume a brownish-purple color; sometimes the whole plant may be of this hue, though in general it is confined to the upper portion. The flowers are axillary, sessile, and arranged in triplets round the stem, appearing whorled. The corolla is reddish-purple above, striated below with lake blended into white, and every where covered with a dense pubescence. It is tubular, curved, and widest at the top, where it is divided into five auriculated segments or lobes, the laciniae being cordate and closed on each other. The lower end of the tube terminates in an abrupt gibbosity, which is articulated with the germ. The stamens are five in number, inclosed within the corolla and alternate with the lobes or laciniae. The pistil is somewhat longer than the stamens, and appears conspicuously above the corolla. Stigma oblong. The calyx is composed of five linear segments obscurely ciliated on their margins, of a dark purplish color and half an inch long. The germ to which they are articulated is beneath, and garnished with a single green bract, longer and broader than the calyx leaves and proceeding from its base. The berries succeed to the flowers, generally in the number of six to each axil, sometimes there are but three, but occasionally nine in luxuriant plants. They are ovate, orange-colored when mature, with three divisions, and contain three bony nuts or seeds.
No 64

PAPAVER SOMNIFERUM.
Poppy, Garden-poppу, White-poppу
PAPAVERACEÆ.

Poppyworts.

No. 64.

PAPAVER SOMNIFERUM.

Poppy. Garden poppy, White poppy.

Place—Europe.

Quality—Somewhat bitter.

Power—Narcotic, anodyne.

Use—Pleurisy, catarrh.

BOTANICAL ANALYSIS.

Natural Order. Rhéadeæ—L. Papaveraceæ—J.

Class XIII. Polyandria. Order Monogynia.

Genus. PAPAVER.

From the Celtic Papa, which signifies pep, or the soft food given to children, in which the seeds were formerly boiled to make the infants sleep.

Synonymes.—Le pavot (F.), Der mohn (Ger.), Maankop (Dutch), Papavero (L.), Adormidera (S.), Papaîla (P.), Post (Ind.), Mak (Russ. and Pol.), Valmue (Dan.)

THE ESSENTIAL CHARACTERS.

Calyx. Sepale two, rarely three, deciduous, imbricated in estimation.

Corolla. Petals four, rarely five or six, hypogynous.

Stamens. Often wanting, but some multiple of four, rarely polyadelphous. Anthers innate.
PAPAVER SOMNIFERUM.

Ovary. Solitary. Style short or wanting. Stigmas two, or if more, stellate upon the flat apex of ovary.

Fruit. Either pod-shaped, with two parietal placentæ, or capsular with several.

Seeds. Indefinite or numerous, minute. Embryo minute at the base of oily albumen.

THE SECONDARY CHARACTERS.

PAPAVER. Sepals two, caducous. Petals four. Stamens indefinite or numerous. Capsule one-celled, opening by pores under the broad, persistent stigma.

Calyx two-leaved, caducous. Corol four-petaled. Stigma a broad disk, with radiating lines. Capsule one-celled, dehiscent by pores under the permanent stigma.

THE SPECIFIC CHARACTERS.

Calyx and Capsule glabrous. Leaves clasping, gashed, glaucous.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

The somniferous or white poppy is a native of Asia, and has become naturalized in Europe and in the United States. It was well known to the ancients, and is spoken of by Homer as then cultivated in gardens, perhaps at first, solely for the sake of its seed, which was used as food. It is now extensively cultivated in most of the states of Europe, not only on account of the opium for which it is reared in Turkey, Persia and India, but also on account of the capsules, and of the bland oil obtained from the seeds. In the United States it has seldom been grown except as an ornamental flower, but there is every reason to believe that its cultivation would prove a very lucrative branch of industry not only from the opium that might be obtained, but also from the oil to be procured from the
seeds, which is an excellent substitute for that of the olive and is much employed to adulterate it.

Papaver Somniferum is an annual plant, flowering in June and July in Europe, and in February in India. The root is tapering and white, the whole plant is generally smooth, though sometimes there are a few rigid hairs on the upper part of the stem. The stem is glaucous, colored, smooth, erect and round, somewhat branched, leafy, rising to the height of two, three or four feet, when in a favorable situation. The leaves are large, simple, obtuse, lobed and crenated, and embracing the stem on which they are alternate ly placed. The flowers are large, various in color and supported on long terminal footstalks. The calyx is formed of two smooth ovate, bifid, concave leaves, that drop on the expanding of the petals, which are four in number, large, roundish, entire, somewhat undulated and white, occasionally of a silver-grey color, and tinged with violet at the base. The filaments are very numerous, slender, shorter than the corolla, and support erect compressed anthers; and the germin, which is globular and smooth, is crowned with a many-rayed stigma. The capsule, which stands on a short pedicel, is globular when well grown, smooth, glaucous, from two to four inches in diameter, a little flattened at the top and bottom, and crowned with the persistent stigma, the segments of which stand erect and have an elegant appearance. The seeds are small and indefinite, white or grey, reniform and very numerous; they escape when ripe through small openings under the points of the stigma.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

All parts of the *Poppy* except the seeds (which are alimentary and not narcotic) contain a white opaque narcotic juice, which, however, abounds more in the capsules, and hence these are the only official parts of the plant. A decoction of the poppy may be made to answer many of the purposes of opium itself. In the diseases of young children it is far preferable. The leaves, stalks and heads are all possessed of the narcotic principle. Poultices made with a decoction of this plant are excellent applications to assuage pain and allay anguish in cases of cancer, ulcers and chronic inflammations. The poppy tea may be taken in hysterics, painful menstruation, dysentery, diarrhoea, cholera morbus, nervous headache, toothache, earache, coughs, consumption, and in general any painful disease where there is not a high degree of inflammation and fever.

Opium is more generally used than any other remedy. It is the
Inspissated juice of the white poppy. The juice is a white milky fluid, which oozes from the leaves, capsules and stalks when they are slightly cut.

The juice of the poppy, exposed for a few days to the sun and air, thickens into a stiff, tough mass, which is Opium. The best kind of opium comes from Turkey. It has a peculiar heavy, disagreeable smell and a bitter, nauseous, acrid and warming taste. It is of a dark-brown color, and when reduced to powder, yellow. It is compact, solid, tenacious, and when broken has a shining fracture. The best part of it comes in flat pieces, covered with large leaves and reddish-capsules of a species of rumex probably used in packing it. The round masses without the capsules adhering to them, are of an inferior quality.

The East India Opium is soft, ductile and about the consistency of tar. It has something of a smoky smell, a darker color and a more nauseous and bitter taste. It is supposed to be about half the strength of the Turkey opium.

Opium is a powerful narcotic or inducer of sleep, and an astringent. No medicine has ever been discovered at all comparable to it in moderating and relieving pain, or in promoting sleep. It is soluble in alcohol, wine, vinegar and water, though the two last afford but weak solutions of it. Its sedative virtue resides in a principle called morphia or morphine.

A grain or two of opium taken into the stomach, produces a remarkable composure of the mind, succeeded by a certain degree of languor and drowsiness; the pulse becomes slower, fuller and softer, all the secretions are in the first instance diminished; the motion of the bowels is retarded; the thirst increased and the mouth dried. The heat of the body appears to be increased and the senses rendered dull. In the course of three or four hours a perspiration is produced. The narcotic effect of a dose of opium lasts about eight hours, and in general a full dose of it cannot be given with safety oftener than three times in twenty-four hours. In cases of great pain and distress it can be given much oftener and in larger doses.

The medium dose of opium is one grain, given in the form of a pill. It is often, however, given in doses of from one to three grains. It operates differently upon different individuals. In almost all diseases attended with pain, distress and loss of sleep, opium is more or less used, and is found of essential service. In the commencement of inflammatory diseases it is deemed inadmissible unless its use becomes unavoidable from the urgency of the pain and the entire want of sleep. It is generally used in the form of Laudanum or Paregoric.
EUGENIA PIMENTA.
Allophane Jamaica piper. Barb. et J. T.
M Y R T A C E À.

M y r t l e b l o o m s.

N O. 65.

E U G E N I A P I M E N T A.

Pimento. Allspice, Jamaica pepper, Bayberry-tree.

Place—South America.
Quality—Aromatic, fragrant.
Power—Heating, stomachic.
Use—Spice, condiment in dressing food.

B O T A N I C A L A N A L Y S I S.

Natural Order. Hesperides—L. Myrtaceæ—J.
Class XII. Icosandria. Order Monogynia.

Genus. EUGENIA.

In honor of Prince Eugene of Savoy, who was a protector and encourager of
Botany, and possessed a botanic garden.

Synonymes.—Pimente (P.), Gewurzmyrte (Ger.), Pepe dell Giamaica (I.), Pi-
mienta (S.), Krydd pepper (Swed.)

T H E E S S E N T I A L C H A R A C T E R S.

Calyx. Adherent below to the compound ovary. The Limb
four—five cleft, valvate.
Corolla. Petals as many as the segments of the calyx.
Stamens. Indefinite. Anthers intorse. Style and Stigma
simple.
Ovary. Two or three-celled.
EUGENIA PIMENTA.

Fruit. A berry.

THE SECONDARY CHARACTERS.

Eugenia. Tube of the Calyx roundish. Limb divided, as far as the ovary, into four segments. Petals as many as the lobes. Stamens indefinite, free. Ovary two or three-celled. Cells containing many ovules. Berry nearly globose, crowned by the calyx when ripe, one, rarely two-celled. Seeds one or two, somewhat rounded, large. Embryo spuriously monocotyledanous. Cotyledons very thick, combined into one mass. Radicle scarcely distinct, very short.

THE SPECIFIC CHARACTERS.

Eugenia Pimenta. Peduncles axillary and terminal, trichotomous-paniculate. Flowers four-cleft, in the forks of the peduncle, nearly sessile, others paniculate. Leaves oblong or oval, pellucid-dotted, somewhat opaque, smooth. Branches terete. Branchlets compressed, the younger ones as well as the pedicles pubescent.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

Eugenia Pimenta is a native of South America, where it is called Pumake (in the Maypure language), and of the West India Islands and Mexico. It grows very abundantly on the hilly parts, on the north side of the island of Jamaica, whence its fruit received the name of Jamaica pepper. It flowers in June, July and August, and soon afterwards ripens its fruit.

The tree is beautiful and handsome, rising in height about thirty feet, straight, branching, and covered with a very smooth grey bark. The leaves, which are supported on footstalks at the ends of the twigs, are elliptical, pointed, of different sizes, but the largest are five inches long and two broad in the middle, smooth, thin, entire, shining, and of a deep green color. The foliage in general is dense and ever-verdant and at all times gives the tree a refreshing
EUGENIA PIMENTA.

appearance. The flowers are produced in terminal bunches, or rather trichotomous panicles. The calyx is four-cleft. The petals four, reflected, of a pale green color, enclosing many longer spreading filaments of the same color, supporting pale yellow roundish anthers. The fruit is a spherical berry, crowned with the persistent calyx; when ripe it is black or dark purple, smooth, shining and bilocular, with the seeds enveloped in a moist green pungent aromatic pulp. When the berries ripen they lose much of the aromatic warmth for which they are esteemed, and acquire a taste similar to that of juniper-berries. The tree exhales an aromatic fragrance, especially during the summer months, when it is in flower.

Jamaica Pepper, commonly called Allspice, from the taste being thought to resemble a composition of all other spices, is about the size of, or somewhat larger than a peppercorn. It is round, brown, dull, roughish but not wrinkled, crowned with the segments of the calyx, and occasionally though rarely has a short pedicel. It consists of an external somewhat hard but brittle shell, which is paler within and encloses two dark-brown cochleate seeds.

The plant begins to bear fruit when three years old and arrives at maturity at seven. It grows best in a calcareous soil, covered with a light mould. The berries are gathered before being ripe and are carefully dried on mats or terraced floors in the shade. The first day or two they are often turned so as to be fully exposed to the sun. When they begin to dry they are frequently winnowed and are removed under cover at night. In ten or twelve days or about two weeks they become wrinkled, dry and of a dark-brown color, and are then packed in bags or casks for sale. Some kiln-dry them by which the same object is sooner effected. They have an aromatic, agreeable smell, and a strong clove-like taste. The more fragrant and smaller they are, the better they are accounted.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

Eugenia Pimenta has an aromatic, agreeable odor, resembling that of a mixture of cinnamon, cloves and nutmegs, with the warm pungent taste of the cloves, qualities which reside chiefly in the cortical part of the dried berry. Water, alcohol and ether extract its virtues. The watery infusion is of a brown color, and reddens litmus infusion. With solution of sulphate of iron it immediately strikes a deep black color and slowly lets fall a precipitate. Nitrate of mercury precipitates it of a yellowish-brown, acetate of lead of a dirty green, and nitrate of silver of a deep reddish-brown color. It
EUGENIA PIMENTA.

is also precipitated by infusion of yellow cinchona bark. The sulphuric and muriatic acids redden it, and throw down pale rose-colored precipitate s. The nitric acid forms no precipitate but gives the infusion a yellow hue. The alcoholic tincture is rendered milky and slowly precipitated by water; the ethereal, when evaporated in water, deposits drops of a greenish-yellow volatile oil, a pellicle of a pungent nauseous-tasted resin, and some extractive. Hence Jamaica pepper or Allspice appears to contain a volatile oil, resin, extractive, tannin, and gallic acid. It is devoid of the fiery taste and acridity which distinguish pepper and ginger, but in other respects its effects agree with those of other spices. The volatile oil is by far the most important of its active principles, yet the resin, extractive and tannin must contribute very considerably to its operation.

Allspice is an energetic stimulant and tonic, which is generally used as a condiment, partly on account of its flavor, and partly to promote the digestion of some kinds of food, which experience has shown are not by themselves easily or readily digested. It is frequently employed with success and has proved useful united with bitter substances in dyspepsia attended with much flatulence and in arthritic and hysterical or old rheumatic affections. The watery infusion, sweetened with sugar and the addition of a little milk, is very readily taken by children and is an excellent cordial in malignant measles, scarlatina, confluent small-pox and the other exanthemata when the fever assumes the typhoid type. It is also exhibited advantageously when the eruption is slow to appear, and when it is necessary to restore the strength of the patient. Its principal use in medicine is however to cover the disagreeable taste of other remedies, or to give them warmth. For this purpose it may be substituted for any aromatic substance.

The dose of the berries is from five grains to forty.

The following are the principal preparations of this medicine:

Aqua Pimentæ. Allspice water. Take of the berries, bruised, half a pound, water a pint. Macerate the berries in the water for twenty-four hours, and with a sufficient quantity of water to prevent empyreuma. Distil a gallon.

Spiritus Pimentæ. Spirit of Allspice. Take of the berries, bruised, two ounces, proof spirit a gallon, water sufficient to prevent empyreuma. Macerate for twenty-four hours, then distil a gallon by a gentle heat.

Oleum Pimentæ. Oil of Allspice. Obtained by submitting the berries, bruised, with water to distillation.

The medicinal uses of these preparations are very limited.
MYRTACEÆ.

Myrtleblooms.

No. 66.

PUNICA GRANATUM.

Pomegranate.

Place—Africa, South Europe.

Quality—Styptic.

Power—Astringent, relaxing, anodyne. Flowers diuretic, anthelmintic.

Use—Headache, prolapsus, worms.

BOTANICAL ANALYSIS.

Natural Order. Pomaceæ—L. Myrtaceæ—J.

Class XII. Icosandria. Order Monogynia.

Genus. PUNICA.

Lat. Punica, Carthaginian, or of Carthage, where it first grew.

Synonymes.—Le grenadier (F.), Der’ granatbaum (Ger.), Graanaatboom (Dutch), Granato (I.), Granado (S.), Romeira (Port.), Rumman (Arab.), Granatnik (Russ.)

THE ESSENTIAL CHARACTERS.

Calyx. Adherent below to the compound ovary. The Limb four—five-cleft, valvate.

Corolla. Petals as many as the segments of the calyx.

Ovary. Two or three-celled.

Fruit. A berry.

PUNICA GRANATUM.

The red succulent pulp, which is not officinal, is pleasantly acid, resembling that of the orange; it is cooling, very refreshing, useful for quenching thirst and gently aperient. It contains much mucilage, united to a little tannin. It was formerly made into wine by the ancients; in the East it is much used for making sherbets and is highly esteemed.

Both the rind of the fruit and the bark of the root are astringent. They are given in the form of decoction in chronic and colliquative diarrhoea, and the protracted stage of dysentery. They are supposed to prove beneficial also in checking the violent sweating which accompanies hectic fever; but the chief use of the decoction is an injection in leucorrhoea, or a gargle in sore throats after the local inflammation is moderated.

The bark of the root has long been used by the natives of Hindostan, and according to M. Deslandz by the negroes of St. Domingo, as a specific in cases of tapeworm. In consequence of the recommendations of Drs. Fleming, Buchanan and Ainslie it was extensively experimented with in Europe and with almost universal success. Its utility for this purpose has been fully confirmed by the experiments of Mr. Breton, Dr. Gomes of Lisbon, and Dr. Wolff of Bonn. The mode of administration is in decoction made with two ounces of the freshly dried bark to two pints of water, boiled down to a pint, of which a wineglass full is to be taken every half hour till the whole is consumed. The action of the remedy is generally accompanied with nausea, and sometimes vomiting, purging, and even vertigo and syncope. The worm, however, is generally voided alive, a few minutes after the last dose. Celsus says it was used by the ancients for a similar purpose. M. Bourgeois, who gave it in a great number of cases, advises that before commencing with its administration, the patient be kept on a strict and spare diet for some days, and the evening before the medicine is taken to have his bowels well opened by means of a full dose of castor oil. If the remedy should not succeed upon the first trial, it should be repeated every day for three or four days until the worm is discharged. Tannia is comparatively rare in this country, and the pomegranate root has been little used, possibly because the oil of turpentine in large doses has been found perfectly effectual.

The bark and flowers are sometimes given in the form of powder, in doses of a scruple increased to a drachm. A decoction may be prepared in the proportion of an ounce of the medicine to a pint of water, and given in the dose of a fluid ounce. The seeds are demulcent.
No. 67.
ARISTOLOCHIA SERPENTARIA.
Virginia Snake-root, Snake-weed.
ARISTOLOCHIAE.

Birthworts.

NO. 67.

ARISTOLOCHIA SERPENTARIA.

Place—United States.

Quality—Acrid.

Power—Expelling, diuretic, diaphoretic, anthelmintic, alexipharmic.

Use—Intermittents, eruptions, venomous bites.

BOTANICAL ANALYSIS.

Natural Order. Sarmentaceæ—L. Aristolochiaceæ—J.

CLASS XX. Gynandria. ORDER Triandria.

GENUS. ARISTOLOCHIA.

From the Greek arístos, excellent, and lochéos, pertaining to parturition; the plant was considered formerly to possess considerable powers in aiding the expulsion of the placenta, and in exciting the lochial discharge;

SYNONYMES.—Serpentaire de Virginie (F.), Schlangenosterluzey, Virginienoster. luzey, Virginische Schlanjenwurzel, (Gr.), Slangrod, (Dan.), Ormrot, (Swed.), Wózownik Wirginianski (Pol.)

THE ESSENTIAL CHARACTERS.

Calyx. Tube adherent to the ovary. Segments three valvate in aestivation.

Stamens. Six—twelve, epigynous or adhering to the base of the short and thick styles.

Ovary. Three—six-celled. Stigmas radiate, as many as the cells of the ovary.
ARISTOLOCHIA SERPENTARIA.

gum, fecula, woody fibre, albumen and malic and phosphoric acids, partly combined with potash. The active principles of Serpentaria therefore appear to reside in a bitter resin and an essential oil. "On distillation a white pearly fluid collects in the receiver, strongly impregnated with the aroma, but less bitter than the root. This fluid on standing deposits round the edges of its surface small crystals of camphor." Bigelow.

ARISTOLOCHIA SERPENTARIA is one of the most valuable and well established of our native remedies. It is much used in pharmacy and enters into the composition of many extemporaneous preparations. The root is stimulating diaphoretic and tonic. It is almost entirely destitute of smell, with, at first, a sweetish taste, but afterwards hot and pungent, producing a very peculiar tingling sensation in the fauces. It is beneficially employed in typhoid and putrid fevers, whether idiopathic or accompanying the exanthemata, to excite diaphoresis, and support the powers of the system, and is found frequently to increase the efficacy of Cinchona in removing protracted intermittents. It is administered with success in gangrenous affections, chlorosis and atonic affections of the intestinal canal, and generally in all the cases in which it becomes necessary to stimulate powerfully the organs and to promote at the same time a slight diaphoresis. It is also an excellent remedy in dyspepsia, particularly when the skin is dry and parched. It must be observed that it acts on the skin by stimulating this membrane and increasing perspiration. It is also sometimes used as a gargle in putrid sore throat. On account of its stimulant properties, it is contra-indicated in the inflammatory diathesis, and previous to its exhibition the bowels should be well evacuated. It may be given in substance, (of the powdered root the dose is from 20 to 30 grains,) or in infusion, (which is almost always preferred,) made by macerating half an ounce of the bruised root in a pint of boiling water, in a covered vessel for two hours and straining. This is the ordinary form in which Serpentaria is employed. The dose is one or two fluid ounces repeated every two hours in low forms of fever, but less frequently in chronic affections. Decoction is a bad form of preparation of Serpentaria, as the boiling dissipates the essential oil in which much of the virtues of the remedy depends.

The wide range of country over which ARISTOLOCHIA SERPENTARIA is to be found will render the plate particularly useful, as it will enable the practitioner and apothecary to detect this well characterized species in almost every forest of the middle, western and southern States.
N° 68.
IPOMEA JALAPA.
Jalap
CONVOLVULACEÆ.

BINDWEEDS.

NO. 68.

IPOMŒA JALAPA.

Jalap.

Place—South America.
Quality—Nauseous; acrid.
Power—Purging.
Use—Cold habits, worms in children.

BOTANICAL ANALYSIS.

Natural Order. Campanaceæ—L. Convolvulaceæ—J.
Class V. Pentandria. Order Monogynia.

GENUS. IPOMŒA.

From Greek íps, vine or twining, and omvios like, from its resemblance in appearance and habit.

Synonyms.—Jalap (F.), Jalappenharz (Ger.), Scialappa (J.), Jalapa (S.).

THE ESSENTIAL CHARACTERS.

Calyx. Sepals five, much imbricated, usually united at base, persistent.
Corolla. Regular. Limb five-lobed or entire, plaited and twisted in aestivation.
Stamens. Five, inserted into the base of the corolla and alternate with its lobes.
IPOMÆA JALAPA.

Ovary. Two—four-celled, free. Styles united into one.
Fruit. Capsule, two—four-celled, valves with septifragal dehiscence.
Seeds. Few, large, with mucilaginous albumen. Cotyledons foliaceous or wanting.

THE SECONDARY CHARACTERS.

Calyx five-cleft naked. Coroll funnec or bell form, with five folds. Stigma globe-headed, papillose. Capsule two or three-celled, many-seeded.

THE SPECIFIC CHARACTERS.

Leaves ovate, obscurely obtuse, spreading, villose underneath. Peduncles one-flowered.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

This species of CONVOLVULUS is a native of South America, taking its name from Palappa, a city of Mexico in Vera Cruz, in the neighborhood of which it grows at a height of about six thousand feet above the ocean. It might probably be cultivated in the southern section of the United States. It delights in rich light soil and young cuttings root freely in sand under a hand glass. It flowers in August and September.

The root is perennial, of an irregular egg-shape, and a dark almost black color on the outside, ponderous, large and when fresh
abounding with a milky juice. It sends up many triangular, twining, twisted stems which extend upwards of ten feet, with smooth petiolated leaves, of a bright green color, varying in shape, some being cordate, others angular and a few oblong and pointed. The flowers are on short, axillary peduncles, that send off two pedicels, each bearing a large, bell-shaped, entire, plaited flower, of a reddish color externally, and a dark purple within, with a calyx composed of five oval, concave pale green leaves, somewhat indented at their points. The anthers are of a yellow color, large, on slender short filaments, the style is shorter than the filaments, and the germin oval. The seeds are bristled.

The dried roots found in commerce rarely exceed a pound each in weight. They vary in size, from that of the fist to that of a nut. When entire they are usually more or less oval and pointed at the two opposite extremities. The larger roots are frequently incised, apparently to facilitate dessication. They are covered with a thin brown wrinkled cuticle. They should be heavy, hard and difficult to powder. When broken good jalap roots should present a deep yellowish-gray color interspersed with deep brown concentric circles. The slices vary in their shape, color and other properties. Those of inferior quality are light, whitish and friable. The sliced tubers are liable to be adulterated, which is sometimes done with slices of briony root, but the fraud is easily discovered by the spongy texture and whiter color of the latter, and its burning less readily when applied to the flame of a candle.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

Good Jalap root has a sweetish, heavy odor when broken, and a sweetish slightly pungent taste. It is heavy, compact, hard, brittle, with a shining undulated fracture, exhibiting numerous resinous points distinctly visible with the microscope. It is always kept in the shops in the state of powder, which is of a yellowish gray color, and when inhaled irritates the nostrils and throat and provokes sneezing and coughing. It yields its active properties partly to water, partly to alcohol and completely to diluted alcohol. M. Cadet de Gassicourt obtained from five hundred parts of jalap, twenty-four of water, fifty of resin, two hundred and twenty of gummy extract, twelve and a half of fecula, twelve and a half of albumen, one hundred and forty-five of lignin, sixteen and three-tenths of saline matters, two and seven-tenths of silica, with a loss of seventeen parts. The resin of jalap consists of two portions, one of which, amounting
to seven parts out of ten, is hard and insoluble in ether, the other is soft and soluble in that menstruum. The proportion of resin to the other ingredients of the root varies in different specimens.

Ipomœa Jalapa is a stimulant cathartic acting briskly on the bowels, and although occasionally griping severely yet safe and efficacious. It is used in the same cases as scammony, to which it is closely allied not only by its effects, but also by botanical affinities and chemical properties. Whenever it is required effectually to evacuate the intestines, it is tolerably certain in its operation, more so indeed than many other purgatives. In the proper dose it may be given without the least hesitation to children, in any case requiring an active purge. It has an advantage over some other evacuants that it does not stimulate or heat the system, its effects being confined principally to the alimentary canal, the peristaltic motion, secretions and exhalations of which it promotes, and constipation less frequently succeeds its use than of some other purgatives.

Daily experience in fact proves the value of jalap as an active, certain and safe purgative in various diseases both of children and adults. Of course its irritant properties unfit it for exhibition in inflammatory affections of the alimentary canal, as well as after surgical operations about the abdomen and pelvis. Also it is not an appropriate purgative in irritation of, or hemorrhage from the uterus, or in piles and stricture and prolapsus of the rectum. On the other hand its use is indicated in torpid and over loaded conditions of the intestinal canal as well as in constipation attended with retention of the catamenia. When the object is to relieve cerebral congestion and dropsical affections, by a counter-irritant influence on the mucous membrane, jalap is well adapted to fulfil it. "Jalap, (says Bremser,) is without contradiction in verminous diseases, one of the best purgatives and which perhaps possesses at the same time greater anthelmintic virtues than any other."

Jalap is apt to be attacked by worms, which however are said to devour the amylaceous or softer parts and to leave the resin, so that the worm-eaten drug is more powerfully purgative than that which is sound. Thus out of 397 parts M. Henry obtained 72 parts of resin, while from an equal quantity of the latter he procured only 48 parts. Hence worm-eaten jalap should be employed for obtaining the resin, but should not be pulverized, as it would afford a powder of more than the proper strength.

The dose of jalap in powder is from fifteen to thirty grains, of the resin or alcoholic extract from four to eight grains. The latter is usually given rubbed up with sugar, or in emulsion.
N° 69.
Hydrastis Canadensis.

Turmeric root. Golden seal.
RANUNCULACEÆ.

Crowfoots.

No. 69.

HYDRASTIS CANADENSIS.

Place—United States.

Quality—Bitter.

Power—Tonic, stomachic.

Use—Aids digestion, removes obstructions.

BOTANICAL ANALYSIS.

Natural Order. Multisiliquæ—L. Ranunculaceæ—J.

Class XIII. Polyandria. Order Polygynia.

Genus. HYDRASTIS.

From the Greek ὕδωρ, water, the plant grows in watery places. Or to commemorate "a young lady of noble birth."

Synonymes.—Hydraste (F.)

THE ESSENTIAL CHARACTERS.

Calyx. Sepals mostly five, sometimes three, four or six, mostly desiduous, and imbricated in aestivation.

Corolla. Petals three—fifteen, hypogynous, sometimes irregular or wanting.

Stamens. Indefinite or numerous, distinct, hypogynous. Anthers adnate or innate.

Ovary. Indefinite or numerous, rarely solitary or few, distinct, seated on the torus.

Fruit. Either dry achenia or baccate or follicular.
HYDRASTIS CANADENSIS.

used wherever such a remedy is required. It has a pleasantly bitter and somewhat pungent taste, is slightly laxative and of course alterant, aiding the system to remove obstructions and recover its tone, and is highly esteemed and thought valuable throughout the United States. It keeps the bowels moderately open without acting as a purgative, or reducing the strength of the patient. It is highly useful during recovery from fevers, for dyspeptics or those who are troubled with indigestion, or any other complaint to remove the heavy, disagreeable sensation often produced by indigestible food. A teaspoonful of this root pulverized, taken in a little hot water, sweetened, with the addition of a little cayenne, will give immediate relief from the distress caused by unhealthy food in the stomach. When used directly after eating, it aids digestion and removes heaviness from the stomach. A small particle of this powder—the size of a pea—will remove the inquietude.

Golden Seal is an excellent corrector of the bile and may be used for that purpose. It is very good in jaundice and in all derangements of the digestive organs. In colic also it may be used with exceeding good effect. Compounded with poplar bark, one part of the former and two of the latter, four parts of good sugar and one-eighth part cayenne, forms a compound that is valuable in every family, where it should be always at hand.

Turmeric root is very popular and much used in some of the western States in form of an infusion as a topical application in chronic ophthalmia and other diseases of the eye, and there is evidence sufficient of its efficacy in these complaints. The Indians are said to have employed it in the same form for old sores, and as an external application to ulcers. It is likewise highly probable that it may be found useful in many external complaints as a topical tonic.

A strong decoction of Hydrastis Canadensis and poplar bark, with one-tenth as much powdered peach kernels, and one-tenth of strong tincture of myrrh, with an equal measure of dry sugar, make an excellent dysentery or cholera syrup.

This plant was well known to and extensively used by the Indians both as a dye and for medicinal purposes. The root yields a brilliant yellow color, which appears to be permanent and might be advantageously employed in the arts. In an account of the principal dyes used by the Indians, by Hugh Martin, in the 3d vol. of the Trans. Amer. Phil. Soc. 1783, he states that from experiments made by himself and others, it was found to succeed perfectly with silk, wool and linen, and by the addition of indigo to furnish a handsome rich green.
No 70.

Humulus lupulus.

Common Hop.
URTICACEÆ.

Nettleworts.

No. 70.

HUMULUS LUPULUS.

Common Hop.

Place—Europe
Quality—Bitter.
Power—Tonic, narcotic, anodyne.
Use—The strobiles, in nephritis, phrenitis. The seeds in constipation.

BOTANICAL ANALYSIS.

Natural Order. Scabridæ—L. Urticaceæ—J.
Class XXII. Dioecia. Order Pentandria.

Genus. HUMULUS.

From Lat. humus fresh earth, the hop grows only in rich soils. The English word hop seems to be the Anglo-Saxon hoppan, to climb.

Synonyms.—Houblon (F.), Der hopfen (Ger.), Hoppè (D.), Lupolo (I.), Hombrecillo (S.), Lupulo (P.), Hymel (Pers.), Chmel (Russ.), Chmiel (Pol.), Baruce (Indian).

THE ESSENTIAL CHARACTERS.

Calyx. Membranous, lobed, persistent.
Corolla. None.
Stamens. Definite, distinct, inserted into the base of the calyx and opposite its lobes.
HUMULUS LUPULUS.

Ovary. Free, simple, one-ovuled. Style one.
Fruit. Achenium or utricle, surrounded by the membranous or fleshy calyx.

THE SECONDARY CHARACTERS.

THE SPECIFIC CHARACTERS.

Humulus Lupulus. Stem long, annual, rough backwards with reflexed prickles. Leaves very rough, generally three-lobed, deeply cordate at base, on long stalks. Flowers of the barren plants extremely numerous, panicked, greenish. Flowers of the fertile plants in ament with large scales.

Stem twining with the sun. Leaves lobed.

THE ARTIFICIAL CHARACTERS.

Class Dioecia. Stamens apart from the pistils in different flowers upon different plants. Order Pentandria. Herbs exogens, dioecious. Fruit a utricle or achenia. Styles two. Leaves rough (often with stings) stipulate. Flowers inconspicuous.

NATURAL HISTORY.

In England the hop is an indigenous plant, perennial, growing in hedges and flowering in July. Throughout the United States it is found wild in hedges, &c., and is extensively cultivated for the sake of its fertile aments, which are chiefly used as a preservative in malt liquors.

The root sends up many long, striated, angled, rough, flexible stems, which support themselves by twining round upright bodies in a spiral direction from left to right. The leaves are opposite, in pairs, petiolate, heart-shaped, serrated, entire or lobed, and of a dark green color on the upper disc. Both the leaves and petioles are scabrous, with minute prickles, and at the base of each leaf-stalk are
HUMULUS LUPULUS.

two interfoliaceous, entire, reflected, smooth stipules. The flowers are axillary and furnished with bracteas, the males are yellowish white in panicles and drooping, the females which are on distinct plants are in solitary cones or strobiles, ovate and pendulous, composed of membranous scales of a pale greenish color, tubular from being rolled in at the base and two-flowered, each containing one round, flavissh seed, of a bay-brown color, surrounded with a sharp rim and compressed at the tip.

At the proper season while the strobiles are yet scarcely ripe, the plants are cut about three feet from the ground, the poles on which they are twined pulled up, and the strobiles carefully picked off one by one. Those that are over ripe or defective are separated from those that are ripe enough, and both kinds are carried to the kiln as soon as possible after they are picked. The heat of the kiln requires to be regulated with great nicety, and in order to prevent them from drying too fast, many kilns have two floors, on the uppermost of which the greener hops are laid, and gradually dried before being brought to support the heat of the lower floor. Charcoal is the fuel usually employed, other kinds of fuel injuring the flavor of the hops. The strobiles are considered sufficiently dried when they become crisp, but they acquire a degree of toughness and tenacity before they are bagged, from being laid in heaps in the storehouses. Five pounds of moist or under-ripe hops make one pound only when taken from the kiln. The best hops are brought to market in fine canvass sacks, called “pockets,” each of which contains somewhat more than one hundred weight of hops.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

Hops have a strong, peculiar, fragrant, subnarcotic odor, and a very bitter, aromatic, astringent taste. They have a pale, greenish yellow hue, appear like thin transparent veined leaves, and although not tough they are difficult to pulverize.

Some late experiments by Dr. A. W. Ives, of New York, prove that the active properties of the strobiles of the hop reside in a substance which forms one-sixth part only of their weight and which is easily separated by merely sifting in a fine sieve. Dr. Ives has named it Lupulin. He found in 120 grains of lupulin, five grains of tannin, ten of extractive, eleven of bitter principle, twelve of wax, thirty-six of resin, and forty-six of woody fibre (lignin). Hops, from which all the lupulin is separated, yields an extract, which possesses none of the virtues of the hop (Annals of Phil. p. 194). The
HUMULUS LUPULUS.

virtues of the strobiles are extracted by boiling water, or alcohol, or ether. The watery infusion has a pale straw-color, is rendered muddy by the mineral acids; alkalis deepen its color, it strikes an olive with sulphate of iron, is precipitated by alcohol, solution of superacetate of lead, nitrate of silver and tartarized antimony, and when rubbed with magnesia or lime, a rod dipped in muriatic acid discovers the presence of ammonia. The etherial tincture when evaporated in water leaves a pellicle of greenish intensely bitter resin, and deposits some extractive. By distillation in water hops yield a volatile aromatic oil. From these experiments they appear to contain resin, extractive, volatile oil, tannin, an ammoniacal salt, and what has been termed the bitter principle.

HUMULUS LUPULUS is narcotic, tonic, diuretic, and externally applied anodyne and discutient. Hops are said to possess the power of procuring sleep in the delirium of fever, and in mania, when used as a pillow, and owing to this effect having been confirmed in the case of King George the third of England, their efficacy as a general narcotic when introduced into the stomach has been investigated. Dr. Maton observed, that besides allaying pain and producing sleep, the preparations of hops reduce the frequency of the pulse, and increase its firmness in a very direct manner. One drachm of the tincture and four grains of the extract given once in six hours. He found the extract exceedingly efficacious in allaying the pain of articular rheumatism, but subsequent experience has not afforded sufficient proof of its utility as a sedative, and Dr. Bigsby's experiments have lessened very much the confidence physicians were previously disposed to give to it. An ointment compounded with the powder of the hop and lard is recommended as an anodyne application to cancerous sores. A fomentation of it will certainly afford much relief in painful swellings and tumors.

When administered internally, all the good effects of hops may be obtained by the use of Lupulin, which is best given in pills, in doses of six to ten grains, or in tincture in those of half a drachm to a drachm. Lupulin may be likewise substituted for the hops in poultices, ointments, &c., with much advantage.

The principal consumption of hops is in the manufacture of malt liquors, to which they communicate the bitter flavor and tonic properties.

The young shoots of the Humulus Lupulus, when they have risen three or four inches from the root, are sometimes gathered and boiled like asparagus, to which they are very little inferior; these shoots are usually called hop-tops.
No. 71.

Conium Maculatum.

Hemlock.
UMBELLIFERÆ.

Umbellifers.

No. 71.

CONIUM MACULATUM.

Hemlock.

Place—Europe.

Quality—Nauseous.

Power—Narcotic, diuretic.

Use—Scirrhus, scrofula, ulcers, scabies, &c.

BOTANICAL ANALYSIS.

Natural Order. Umbellatae—L. Umbelliferae—J.

Class V. Pentandria. Order Digynia.

Genus. Conium.

From the Greek κόνιον, from κονος, a cone or top, so called because it produced giddiness in those who drank it. It is the Greek name for poison hemlock.

Synonyms.—La cigue (*F.*), Der schierling (*Ger.*), Scheerling (*Dutch*), Cicuta (*I.*), Ceguda (*Sp.*), Boligolow (*Russ.*), Swinicwesz (*Pol.*), Skarntyde (*Dan.*)

THE ESSENTIAL CHARACTERS.

Calyx. Adhering to the ovary, entire or five-toothed.

Corolla. Petals five, usually inflected at the point, imbricate in aestivation.

Stamens. Five, alternate with the petals and inserted with them upon the disk.

Ovary. Inferior, two-celled, surmounted by the fleshy disk which bears the stamens and petals. *Style* two, distinct, or united at their thickened base. *Stigma* simple.
CONIUM MACULATUM.

Fruit. Dry, consisting of two coherent carpels, separating from each other by their faces (*commissure*) into two halves (*merocarps*).

THE SECONDARY CHARACTERS.

THE SPECIFIC CHARACTERS.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

Conium Maculatum is usually supposed to be the *koneion* of the Greek writers, the celebrated *Athenian state poison*, by which Socrates and Phocion died,—and the *cicuta* of the Roman authors. It is a native of Europe and parts of Asia, and is naturalized in many places in the United States. The plant is biennial and umbelliferous, growing under hedges, by road-sides and among rubbish, flowering in June and July.

The root, which is fusiform, branching, whitish and fleshy, exudes when cut a milky juice. The stem rises erect about four or five feet in height, is branching and leafy, round, hollow, striated, smooth, shining and maculated with brownish purple. The lower leaves are very large, above a foot in length, on large sheathing petioles, supra decompound and shining. The upper leaves are bi-

A Latin name used by Virgil (Ec. 2d and 5th) but of unknown application.
CONIUM MACULATUM.

pinnate, the whole stand upon channelled footstalks proceeding from the joints of the stem, are incised, smooth, of a deep green color on the upper surface, but paler underneath. The rays of the umbels are ten or twelve, those of the umbellules fifteen or sixteen. The involucre consists of from three to seven short turned-down, lancet-shaped leaflets with white edges spread at the base, the involucel of three or four leaflets on one side only and spreading. The flowers are very small, the petals white, the outer ones rather longer than the inner, cordate, inflected. The stamens the length of the petals, supporting white obicular anthers. The styles two, filiform, diverging, and crowned with round stigmas. The fruit is ovate, striated, smooth and brownish when ripe.

Hemlock is distinguished from other umbelliferous plants with which it may be confounded, by its large and spotted stem, the dark and shining color of its lower leaves, and their disagreeable smell when fresh and bruised, resembling in some degree the urine of a cat.

For medical use the leaves should be gathered about the end of June or early in July when the plant is in flower, the small leaflets picked off, and the footstalks thrown away. The picked leaflets are then to be properly dried, and as exposure to the air and light destroys the fine green color of the plant, and injures its active qualities, the dried leaflets must be preserved in boxes completely filled, by gently pressing down the leaves, then covered with a closely-fitted lid, wrapped in paper and sealed; or if powdered, the powder may be preserved good, in closely-stopped opaque phials for many years.

As powders are generally affected by the action of the air and light, all powders should be kept in opaque or green glass bottles. The effect of light on a majority of powders is rendered obvious by the labelled side of clear bottles containing them, which are always turned to the light, becoming encrusted with the powder, changed in its color, while the other side remains clear and transparent.

According to Linnaeus, sheep eat the leaves, but horses, cows and goats refuse them. Ray informs us that the thrush will feed upon the seeds, even when corn or grain is to be had. Curtis says Hemlock is eaten by few or no insects.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The odor of properly dried Hemlock leaves is strong, heavy and narcotic, but not so disagreeable as that of the fresh leaves; the taste
CONIUM MACULATUM.

is slightly bitter and nauseous. They are easily pulverized, and the powder should retain the beautiful green color of the leaves. The acrimony only of the fresh leaves is lost in drying; but the narcotic principle remains uninjured if the operation be well performed. The virtues of Conium Maculatum are extracted by alcohol and sulphuric ether. To the ether it communicates a very deep green color, and when the tincture is evaporated on the surface of water, a rich dark green resin remains in which the narcotic principle of the plant appears to reside; it contains the odor and taste in perfection, and half a grain produces headache and slight vertigo. Dr. A. T. Thomson discovered this principle, to which Dr. Paris proposes to give the name of concin. Dr. Brandes has discovered a particular principle of alkaline nature, which he terms cicutine, of a green color, insoluble in water and in doses of half a grain causing vertigo and headache.

Hemlock is a powerful narcotic, and is used as such both internally and as an external application. It has long been employed as a medicine of great efficacy, and although we are indebted to Baron Stoereck, of Vienna, for bringing it into general notice, yet he rated its powers too high, and the multitude of discordant diseases to which he enumerated it as beneficial, led many sober men to doubt its efficacy altogether. Hemlock is nevertheless a useful narcotic and is advantageously applied as a palliative in many complaints not curable by any other medicine. It is found serviceable in chronic rheumatism, in scrofulous, syphilitic and other ill-conditioned ulcers and glandular tumors, in pertussic, and the protracted cough which is very troublesome, and often remains after pneumonic inflammation.

The leaves of this plant are strongly poisonous, many instances of their fatal effects which have occurred in this and other countries are on record. The root of Hemlock, however, does not appear to possess any noxious power. Mr. Curtis, in the Flora Londinensis, expressly states that they have been eaten in the recent state and also boiled in considerable quantities without occasioning any inconvenience. An over-dose of Hemlock produces sickness, vertigo, delirium, dilatation of the pupils, great anxiety, stupor and convulsions. The best antidote is vinegar, after the stomach has been evacuated and the cerebral excitement reduced by bleeding and purging.

The best mode of exhibiting Hemlock is the dried leaves in the form of powder: dose three grains, gradually increasing it every day until a slight vertigo forbids its further increase.
No 72.

Emonymus Atropurpureus.

Spindle-tree, Wa-hoo.
CELASTRACEÆ.

Staff-trees.

No. 72.

EUONYMUS ATROPURPUREUS.

Spindle-tree. Burning bush, Wa-hoo.

Place—United States.
Quality—Bitter.
Power—Tonic, laxative.
Use—Ague, dyspepsia, fever, debility.

BOTANICAL ANALYSIS.

Natural Order. Dumosæ—L. Celastraceæ—J.

Class V. Pentandria. Order Monogynia.

Genus. EUONYMUS.

From the Greek eu, well, and onoma, a name, well named. The application of the name is however obscure. Euonymus was also a Heathen divinity.

Synonyms.—Fusain, or Bennet de Pretre (F.), Spindelbaum (Ger.), Fussagino (L.)

THE ESSENTIAL CHARACTERS.

Calyx. Sepals four—five, united at base, imbricated.
Corolla. Petals as many as sepals, inserted by a broad base under the margin of the flat, expanded disk which surrounds the ovary.
Stamens. As many as the petals and alternate with them, inserted on the margin of the disk.
EUONYUS ATROPURPUREUS.

Ovary. Superior, immersed in and adhering to the disk.
Fruit. A capsule or berry.
Seeds. Either with or without an arillus.

THE SECONDARY CHARACTERS.

EUONYMUS. Calyx flat, of five (sometimes four or six) united sepals. Corolla flat, inserted on the outer margin of a glandular disk. Stamens five, with short filaments. Capsule colored, five-angled, five-celled, five-valved. Seeds ariled.

Calyx five-parted or five-cleft, flat. Corolla flat, inserted on the outer margin of a glandular disk Capsule five-angled, five-celled, five-valved, colored. Cells two-lobed. Seeds calyptrate or ariled.

THE SPECIFIC CHARACTERS.

THE ARTIFICIAL CHARACTERS.

CLASS PENTANDRIA. Stamens five. ORDER MONOGYNIA. Polypetalous. Flowers inferior, regular. Stamens alternate with the Petals. Shrubs.

NATURAL HISTORY.

The Spindle-tree is a smooth shrub or large bush, growing from four to ten feet high in shady woods and thickets, in river bottoms in the western States. It flowers in June, and its seeds ripen late in the fall. The Indians generally called it Wa-hoo, among whom it is said to have been a popular remedy, as well as among the whites of certain early settlements in the Mississippi valley.

The bark is smooth, dark gray, interspersed with large white irregular shaped spots, which disappear towards the termination of the branches. The shrub is considerably branched. The branches shooting up at very acute angles, sometimes three together; the extreme portions of the branches, constituting the growth of the preceding year, are of a dark green color with many dark spots, whilst those portions which appear to have been produced two years preceding
EUONYMUS ATROPURPUREUS.

are less green with stripes or lines of white. Leaves petiolate, opposite on the young branches, alternate on the old, oblong, ovate, acuminate, serrate, deep green on the upper and light on the under side. Flowers, a kind of cyme, or a cluster often axillary to the leaves, very small, dark reddish-brown inside, inclining to green outside, producing an angular shaped rough involucre or husk, which opens in the fall, exhibiting the beautifully bright fiery red fruit or berries in strong contrast with decaying nature and which has procured for it the name of burning bush, it sometimes bears.

The common name Spindle-tree is derived from the uses to which another species of the Euonymus is applied. This species has a wood which without being hard, is very tough; and this was formerly much employed in making spindles for the spinning-wheel. Now that the jenny has superseded the distaff, this is little used except for making toothpicks and skewers: and also by watch-makers, for cleaning delicate machinery, for which it is very well adapted on account of the fine point with which it may be worked without breaking. Another of its common names, Prick-wood, seems to render it not improbable, that it was formerly used in the manufacture of those skewer-like pins, which were employed to hold the dress together as late as the reign of Henry VIII., when the manufacture of metal pins became more general.

The Euonymus Atropurpureus, Spindle-tree, is of easy culture in common soil, and propagated by layers, ripened cuttings planted in autumn, or seeds.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The bark of the root of Euonymus Atropurpureus is the part employed as medicine, and should be gathered at the time that it will peel off readily, when it should be beaten with a hammer or mallet, carefully dried and preserved for use. The bark when dry is of a light brown color outside, white within, rough and much wrinkled, resembling in its appearance the dried root of spignet. It possesses a peculiar bitterness that is very permanently tonic and somewhat anti-periodic. It exhibits also a laxative power, on account of which it is esteemed very valuable in the treatment of dyspeptic complaints, for the stomach will bear this substance with advantage, while many other tonics produce disagreeable symptoms. Some physicians and practitioners regard it as one of the most valuable articles in dyspepsia.

This medicine is also particularly useful in all cases of debility,
EUONYUS ATRO PURPUREUS.

and valuable as a tonic after intermittent fever or fever and ague. When depended on for the cure of ague, it should be preceded by an emetic or cathartic, as the circumstances may require, and then if freely and perseveringly applied it will generally be successful. It may be used alone or combined with balmony, or any other tonic. The dose is from half to a whole teaspoonful three or four times a day.

The seeds of the Spindle-tree, as well as those of the other species, are all nauseous, purgative and emetic, and are used in some places to destroy vermin in the hair. The leaves are poisonous to sheep, and other animals feeding on them.

The following are the principal preparations of this medicine:

Tinctura Euonymus. Take of the bark in coarse powder, four ounces, alcohol two pints. Digest seven days and filter.

Tincture of Euonymus. Tonic and anti-periodic, useful in intermittent and remittent fever and in general debility. The dose is from two to four fluid ounces.

Extractum Euonymus. Take Euonymus bark four pounds, alcohol two and a half gallons, water three gallons. Digest in the alcohol at a temperature a little below the boiling point, for four hours, or keep in a warm place for a week, strain through calico and distil to one pint. Boil the bark in the water for four hours over a slow fire, strain and evaporate to one pint. Mix the liquors and evaporate by means of a water bath to the proper consistence.

Extract of Euonymus. This article is an excellent laxative bitter and is very highly esteemed in convalescence from fever, especially when of an intermittent or remittent type, and is decidedly the best article used. The dose is five grains.

ADVERTISEMENT.

The fourth year of the Family Flora or Materia Medica Botanica will be published in the usual form. Each part will contain the usual number of plates of plants, colored from original drawings, taken from nature, with the Botanical Analysis, Natural History, and Chemical and Medical Properties and Uses, as in the preceding series. The fourth year will perfect the second volume, but the three first years may be bound together and in that case two volumes will complete the whole work. Subscription for each year is always $1.50 in advance, or $2.00 at the end of the year, or for either of the past years.

All communications should be addressed (postage free) to

PETER P. GOOD, Elizabethtown, Essex County, New Jersey.

The Family Flora can only be obtained by application as above (post paid) with remittance; which will secure immediate and punctual attention.
No 73.
HYOSCYAMUS NIGER.
Henbane. Poison tobacco &c
SOLANACEÆ.

Nightshades

No. 73.

HYOSCYAMUS NIGER.

Henbane, Poison, Tobacco, &c.

Place—Europe.

Quality—Insipid.

Power—Narcotic, sedative.

Use—Paralysis, convulsions, mania, epilepsy. The smoke to relieve tooth-ache.

BOTANICAL ANALYSIS.

Natural Order. Luridæ—L. Solanaceæ.

Class V. Pentandria. Order Monogynia.

Genus. HYOCYAMUS.

From υς, a pig, and κακος a bean, the fruit has been thought to resemble a bean, and is said to be not poisonous to swine.

Synonymes.—La jusquiamo (Fr.), Das Bilsenkraut (Ger.), Bilsenskruid. (Dutch), Butine (Dan.), Giusquiamo (I.), Beleno (S.), Meimendro (Port.), Belmort (Swed.), Bielem (Pol.), Khorassanie Ajoan (H.), Sickram (Arab.), Khorassanie on sun (Tam.), Buzirnibury (Pers.), Adas-pedas (Malay), Adas (Jav.)

THE ESSENTIAL CHARACTERS.

Calyx. Sepals four, five, more or less united mostly persistent.

Corolla. Regular, Limb four—five cleft, plaited in aestivation, deciduous.

Stamens. Four—five (sometimes one abortive), inserted on the corolla, alternate with its segments. Anthers bursting longitudinally, rarely by terminal pores.
HENBANE.

Ovary. Free (superior), two-celled, (*four-celled in \textit{Natura})*, with the placenta in the axis. \textit{Styles} and \textit{Stigmas} united into one.

Fruit. A capsule or berry.

THE SECONDARY CHARACTERS.

\textit{Hyoscyamus}. Calyx tubular, five-cleft. Corolla infundibuliform, irregular; one of the five, obtuse lobes larger. Stamens five, declinate. Stigma capitate. Capsule ovoid, two-celled opening with a lid near the summit.

THE SPECIFIC CHARACTERS.

Leaves clasping, sinuate. Flowers veiny, sessile.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

Common Henbane is a native of Europe, and is naturalized in the northern parts of the United States. It grows spontaneously at Detroit and Upper Canada, on waste grounds, and at the sides of roads, particularly on a calcareous soil, flowering in July and August. The root is long, tapering, compact, and fibrous. The stem erect, woody, round, and branched, rising about two feet in height. The leaves are alternate, sessile, and embracing the stem, large, the lower ones being about a foot in length, deeply sinuated, undulated, woolly, and of a sea-green color. The flowers are in terminal, recurved, leafy, simple spikes, and each is simple and erect. The calyx is permanent, pitcher-shaped, with a regular five-cleft border, reticulated with veins. The corolla straw-colored, and beautifully pencilled with
HENBANE.

a net-work of purple veins. The filaments are inserted into the tube of the corolla tapering, downy at the base, and supporting purple anthers. The style is purplish, with a blunt, round, stigma. The capsule is globular, invested with the body of the calyx, bilocular, and closed with a convex smooth lid.

The whole plant is covered with soft, white hairs, feels clammy and slightly adhesive. It emits a foetid odor; is of a sea-green hue, and poisonous when eaten.

A species of bug (Cimex) and of beetle (Chrysomela) take their specific names from feeding on this plant; but no quadruped is known to eat it, unless the goat and sheep, and that very rarely and sparingly.

The Henbane is of common culture; it grows in loam and peat, and cuttings root without being covered by a glass.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The virtues of Hyocyamus Niger are completely extracted by diluted alcohol. The watery infusion is of a very pale yellow color and insipid, and has the narcotic odor of the plant. It is not altered by the acids. The alkalies change the color to a deep greenish yellow, which, on the addition of an acid, disappears, and a brownish flocculent precipitate is produced. It is copiously precipitated by solutions of acetate of lead, white; by nitrate of silver, black; sulphate of iron strikes with it a pale olive color, and a dark precipitate is slowly formed. Thence henbane appears to contain resin, mucus, extractive, a peculiar alkaline salt, and gallic acid. M. M. Meissner and Brandes have examined the nature of this alkaline salt, which they have named Hyociama, and have ascertained that on it depends the peculiar virtues and the poisonous properties of this plant. The seeds contain a larger proportion of this alkaloid than either the leaves or the roots; it is in the form of a malate. It crystallizes in long prisms, and forms neutral salts with the acids.

Henbane is narcotic. Its operation is very similar to that of opium; increasing at first the strength of the pulse, and producing some sense of heat, effects which are followed by proportional diminution of excitement and sleep. In some habits it occasions diaphoresis or diuresis, and sometimes a pustular irruption; at other times it purges; and in over doses, produces sickness, stupor, dimness of sight, hard pulse, delirium, and coma, with
HENBANE.

dilatation of the pupils; until the pulse gradually becoming weak and tremulous, petechiae make their appearance, and death ensues. Dissections show the effects of inflammation in the stomach, bowels, and the membranes of the brain. After an emetic is given, and the stomach fully cleared, vinegar is the best antidote.

The effects of henbane as an anodyne were known to the ancients. But as those were ill understood, its use was almost completely relinquished till the time of Baron Storek, who may be regarded as having introduced it. It may be employed in all the cases in which the use of opium is indicated, where the latter disagrees with the habit, or where its constipating effect is wished to be avoided. In painful and spasmodic affections, hysteria, rheumatism and gout, much benefit has resulted from its use, and it is particularly serviceable when it is united with colo-cynth or other powerful cathartics, in colica pictorum. It is used externally to lessen and allay the irritation of very sensible arts, thence fomentations of the leaves have been found beneficial in scrofulous and cancerous ulcers, haemorrhoids and other painful swellings. The leaves and marshmallow flowers boiled in milk, with the addition of a few grains of acetate of lead, are recommended as a topical application in scrofulous ophthalmia. Smoking the leaves, like tobacco, is said to allay the pain of toothache. Its effects in dilating the pupil, when an infusion of it is dropped into the eye, are similar to those of belladonna, and thence it is also employed as a preparative to the operation for cataract. It is used by practitioners very generally and particularly recommended in the forms of extract and tincture only, and on no occasion should it ever be prescribed in combinations with alkalies, as these destroy its narcotic powers in twenty-four hours.

The leaves are active only in the second year of the plant; if scattered about buildings they are said to drive away mice and rats. If more than a small portion of the leaves should have been accidentally swallowed, brisk emetics ought instantly to be taken, and after discharging the contents of the stomach, it will be necessary to administer some mild drinks, such as large portions of vinegar or lemon juice diluted with water, as the stomach is able to support them. The whole plant is fatal to poultry, whence its common name; it intoxicates swine, but cows, horses, dogs, and goats are able to bear a tolerable proportion before they are affected.
No. 74.

HEDEOMA PLEGIODIES.

Pennyroyal, Sick-weed, Squaw-mint &c
LABIATÆ.

Labiate Plants.

No. 74.

HEDEOMA PULEGIOIDES.

Pennyroyal, Tick-weed, Squaw-mint, &c.

Place—North America.

Quality—Aromatic.

Power—Stomachic, stimulating, emmanagogue.

Use—Nausea, flatulence, obstructed menstruation.

BOTANICAL ANALYSIS.

Natural Order. Labiatae—L. J.

Class XIV. Didynamia. Order Gymnosperma.

Genus. HEDEOMA.

From the Greek ἡέδω, sweet, or agreeable, σμήν, smell, on account of the fragrance.

Synonymes.—Grotten-balsam, (Ger.)

The Essential Characters.

Calyx. Tubular, regularly five-toothed or cleft, or bilabiate, persistent.

Corolla. Bilabiate, (rarely regular, five-toothed,) the upper lip bifid or entire, overlapping in aestivation the lower three-cleft one.

Stamens. Four, didynamous, or sometimes only two, the upper pair being abortive or wanting, situated on the corolla tube. Anthers mostly two-celled.

Ovary. Free, deeply four-lobed, the single style arising from the base of the lobes.
HEDEOMA PULEGIOIDES.

Fruit. One—four hard nuts or achenia.
Seeds. Erect, with little or no albumen. Embryo erect. Cotyledons flat.

THE SECONDARY CHARACTERS.

HEDEOMA. Calyx gibbous beneath at base, thirteen-ribbed, throat hairy, upper lip of Corolla erect, flat, lower lip spreading, three-lobed. Stamens two, fertile, ascending

Calyx two-lipped, gibbose at the base, upper lip with three lanceolate teeth; lower lip with two subulate ones. Corol ringent. Two short Stamens barren.

THE SPECIFIC CHARACTERS.

HEDEOMA PULEGIOIDES. Leaves oblong, few-toothed. Flowers axillary, whorled.

Pubescent, Leaves oblong, serrate. Peduncles axillary, whorled.

THE ARTIFICIAL CHARACTERS.

Class Didynamia. Stamens four, two of them longer than the other two. Order Gymnospermia. Seeds naked. Achenia four (or fewer), included in the calyx. Corolla monopetalous and labiate.

NATURAL HISTORY.

The species comprising this genus Hedeoma, which are mostly North American plants, were included by Linnaeus and other botanists in Cunila and Melissa, but were distinguished, separated and named by Persoon, and they constitute a small, but well-marked group.

The Hedeoma Pulegioides notwithstanding, is yet commonly blended, even by some medical writers, with the Mentha Pulegium, which belongs to a different genus, and does not grow in America. The shape, smell and properties are somewhat similar, whence the same vulgar name; but the American plant appears to be most efficient.

Hedeoma Pulegioides, the American Pennyroyal, is very common and abundant all over the United States and in Canada growing on dry and hilly grounds, on the road sides, in uncultivated fields, and in open woods, and flowers throughout the summer. The plant is of easy culture. The root is annual,
HEDEOMA PULEGIOIDES.

Small, fibrous, branched and yellowish. The stem is upright, about a foot high, with slender branches, obscurely angular, terete and pubescent. The leaves are small, opposite, oblong, lanceolate or suboval, on short petioles, base attenuated and subacute, margin with small remote serratures, surface rough or pubescent, nerved and pale beneath. Flowers all along the branches in axillary whorls of six, nodding on short pedicles, very small. Calyx pubescent, corolla very small, hardly longer, white, with the lips purple, base slender, then campanulate with two small lips, the upper rounded, seldom notched, the lower with two rounded lateral lobes, and an obcordate middle lobe. Stamina and style filiform, anthers oblong. Stigma lateral acute. Fruit four small oblong seeds in the persistent calyx, mouth closed by the ciliated bristles of the lower lip.

Pennyroyal is cultivated for its use in culinary and pharmaceutical preparations. It grows best on a tenacious soil, even a clay is more suitable than a light, silicious soil. It should be moderately fertile, entirely free of stagnant moisture, and consequently on a dry subsoil, or well-drained. A wet soil makes the plant luxuriant in summer, but insures decay in winter.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The medical properties of Hedeoma Pulegoides are stimulant, carminative, diaphoretic and emmenagogue. The smell and taste are very warm, pungent, strong and hardly aromatic, but pleasant or otherwise according to different personal affections. Its active properties reside in a volatile oil, which may be procured by distillation. One cwt. of fresh pennyroyal affords an average produce of one lb. of essential oil. This oil is analogous in properties to that of the European pennyroyal. It has a light yellow color, with the odor and taste of the plant. Its specific gravity is 0.948. It is much used as a rubefacient. It is an ingredient of most of the liniments and other preparations that are designed to act as excitants and counter irritants on the surface. By many it is also used internally as a stimulant, diaphoretic and carminative. It is considered a good remedy in flatulent colic and sick stomach, to correct the operation of nauseating or griping medicines, and to impart flavor to mixtures. It may either be taken alone, dropped on sugar, or it may be
worked into a mass and thus formed into pills. The dose is from two to ten drops.

The infusion commonly called *pennyroyal tea*, is a very popular domestic remedy, and frequently taken freely without regard to quantity or strength. The most popular method of making this tea is: take of pennyroyal a handful, of boiling water a pint. Steep it in a covered vessel, and sweeten with sugar. This infusion is warming and grateful to the stomach, and is particularly useful in allaying nausea and vomiting. In large draughts it promotes perspiration, and taken freely on going to bed, it is an excellent remedy for a sudden cold, or slight attack of disease. Combined with cayenne, it may be given with great advantage in obstruction of the menses, the feet having been previously bathed in warm water, hence it is much used as an emmanegogue in popular practice, and frequently with considerable success. It affords relief in flatulency and pains of the stomach and bowels, and for this purpose may be given freely to children. Although pennyroyal affords, a very popular graveolent tea, and probably more used in domestic practice than any other of the aromatic herbs, yet there are many other labiate plants which are equivalent to it, and possibly more agreeable.

This herb put into water which has become unwholesome during a sea voyage, will give it an agreeable flavor, and render it less injurious to the system.

This plant is also frequently used to kill the Ticks, *Ixodes*, which attach themselves to men, dogs and cattle in summer. Hence one of its common or vulgar names. These troublesome animals are found wherever the *Hedysarums* and *Lespedezas* or true tickweeds grow, upon which they breed. By rubbing the legs or boots with this plant or its oil, these insects will avoid you, or, if they have taken hold, the oil kills them. A strong decoction of the plant is equally convenient, and a strong decoction of tobacco is as good.

The whole plant gives out, when pressed between the fingers, a strong, pungent and grateful scent, which is extremely reviving and pleasant. The expressed juice mixed with a little sugar-candy has been frequently prescribed for the hooping cough, and with remarkable success. A table-spoonful is a dose.

A conserve of the young tops acts as a diuretic and has proved serviceable in the gravel. It is likewise good for the jaundice and all other complaints arising from obstruction of the viscera.
No 75.
ACONITUM NAPELLUS.
Wolfsbane. Monkshood &c.
RANUNCULACEÆ.

Crowfoots.

No. 75.

ACONITUM NAPELLUS.

Monk’s-hood, Wolf’s-bane.

Place—Europe.
Quality—Acrid, somewhat poisonous.
Power—Narcotic, diaphoretic, diuretic.
Use—Rheumatism, gout, paralysis, &c.

BOTANICAL ANALYSIS.

Natural Order. Multisiliquæ—L. Ranunculaceæ—J.

Class XIII. Polyandria. Order Monogynia.

Genus. ACONITUM.

The derivation is not clear. Some writers derive it from Acon, a town of Bithynia, others deduce it from the Greek ἀκοντος, without dust; because the plant grows in dry places; but after all, it most probably comes from ἀκοντ, a rock, for the plant grows also in rocky places.

Synonymes.—Aconit, chaperon de Moine (Fr.) Blanerstrumhut (Ger.) Monnikskappen (Belg.) Sternhut (Dan.) Sternhatt (Swed.) Napello (L.) Aconito (S.)

THE ESSENTIAL CHARACTERS.

Calyx. Sepals mostly five, sometimes three, four, or six, mostly deciduous, and imbricated in aestivation.
Corolla. Petals three—fifteen, hypogynous. Sometimes irregular or wanting.
Stamens. Indefinite or numerous, distinct, hypogynous. Anthers adnate or innate.
ACONITUM NAPELLUS.

OVARY. Indefinite or numerous, rarely solitary or few, distinct, seated on the torus.
FRUIT. Either dry achenia, or baccate, or follicular.
EMBRYO. Minute, at the base of horny or fleshy albumen.
SEEDS.

THE SECONDARY CHARACTERS.

ACONITUM. **Sepals** five, irregular, colored, upper one vaulted. **Petals** five, the three lower minute, the two upper on long claws, concealed beneath the upper sepal, recurved and nectariferous at the apex. **Styles** three—five. **Follicles** three—five.

Calyx wanting. **Petals** five, upper one vaulted. **Nectaries** two, hooded, peduncled, recurved. **Carpels** three or five, pod-like. By some, the corol is considered as a colored calyx.

THE SPECIFIC CHARACTERS.

ACONITUM NAPELLUS. **Stem** straight, erect. **Leaves** deeply five-cleft, cut into linear segments, furrowed above. **Upper Sepal** arched at the back. **Lateral ones** hairy on the inside. **Ovary** smooth.

Leaves shining, five-parted, the divisions three-parted by gashed incisions, sub-divisions linear. Upper lip of the corol lanceolate, ascending, two-cleft. **Spur** straight, obtuse.

THE ARTIFICIAL CHARACTERS.

CLASS XIII. **Polyandria.** **Stamens** twenty or more, arising from the receptacle (hypogynous.) **Order Monogynia.** **Ovary** simple. **Calyx** four-five sepalied. **Leaves** ternately divided. **Flowers** racemose.

NATURAL HISTORY.

The ancient history of *Aconitum* is involved in great obscurity. The Greeks make frequent reference to a most virulent poison, which they term ἀκοίτον. Theophrastus is the earliest writer who speaks of it. As *Aconitum Napellus* is a virulent poison, and is a native of Greece, where it is known at the present day, by the above appellation, it would appear probable that our commonaconite was the plant referred to by the ancients. But the characters of it as given by Theophrastus quite preclude this supposition, and the plant described by this ancient naturalist has never been satisfactorily identified.
This species, *Aconitum Napellus*, varies much in the color and size of its flowers, especially in a cultivated state, and is much prized as an ornament in the garden. It is a native of most parts of Europe, in mountain forests and plains, flowering in May and June. The roots are napiform and fibrous. The stem is firm, elongated, erect, smooth, rising to the height of five or six feet, leafy, and terminating in a long, sparse spike of flowers, racemose, and the peduncles branched below. The lower leaves are few, alternate on long channelled petioles, palmated, or rather pedate, being divided to the base into three or five broad euneiform divisions, deeply cleft and toothed. The pedicels are shorter and the leaves less divided the nearer they are to the summit of the stem. The color of the whole is a deep green on the upper disk, and a pale green on the under; both sides are naked, smooth, and shining. The flowers are of a cerulean blue, on unifloral, erect, axillary, pubescent pedicels. They have no calyx; but two small, erect, calycinal stipules, or rather subulate bracteolae, are placed one on each side of the pedicel within a few lines of the flower. The petals are five; the uppermost helmet-shaped and more acuminate than in some others, covering two singular, peduncled nectanes; the lateral one broad and roundish, the lower oblong, elliptical and divaricating. These four are slightly pubescent. The nectanis are cuculated, the spur of each being hooked and blunt. The lip lanceolate, revolute and bifid. The filaments are spread, and white at the base, where they closely cover the germens, but the upper part is filiform, purple, spreading, and bearing whitish anthers. The germens are three, four, or five, with simple, reflected stigmas, and become capsules containing many angular seeds.

The plant is of easy culture; and for medical purposes the leaves should be gathered when the flowers appear.

CHEMICAL AND MEDICAL PROPERTIES AND USES

The whole of the plant is poisonous; but the deleterious qualities are lost in a considerable degree when it is dried, or long kept, and much of its acrimony is dissipated. The leaves when fresh have a faint narcotic odor, and a moderately bitter, acrid taste, leaving a painful sensation of heat in the mouth when they are much chewed. The activity of the plant is
ACONITUM NAPELLUS.

very uncertain, and depends on soil and the nature of the seasons. The tuber is most active immediately after the period of flowering, next the seed, and successively the leaves, stalk and fruit. Its narcotic principle is an alkaloid, which has been named Aconita. This principle is soluble in cold water, scarcely so in cold alcohol, but freely if heat be applied.

Aconite is narcotic, diaphoretic, and in some cases, diuretic. In over doses it occasions violent nausea, vomiting, hyperetaharsis, vertigo, cold sweats, mania and convulsions, which terminate in death; and these effects appear to depend on its action on the nervous system, as dissections of fatal cases have not displayed any particular marks of organic disease.

Although, as already mentioned, this plant was known to the ancients, it was introduced into regular medical practice by Baron Storck of Vienna, who administered it internally in chronic rheumatism, gout, exostosis, paralysis, and scirrhous; and since the publication of his experiments in 1702, it has been advantageously employed in similar cases, and also in amaurosis, sorofula, cancer, itch, venereal nodes and intermitents. It is now universally ranked among the most potent of therapeutic agents. In consequence, however, of its uncertain action, and its occasional production of alarming symptoms, it is not in general use. Much caution is required in the exhibition of it; and it is absolutely necessary to know the length of time it has been gathered, as its activity varies so very considerably as to require this to be ascertained before the dose can be apportioned. It is given in the form of powder, extract and tincture, and may be combined with calomel, antimonials, camphor and guiaicum. The dose of the powder is one or two grains, gradually increasing it to six or eight. The extract varies much in strength; but its use should always be commenced in doses not exceeding half a grain. The tincture may be administered in doses of ten to fifteen drops.

Succus Spissatus Aconita Napelli. Inspissated Juice of Aconite. Let the fresh leaves of aconite be bruised, enclose them in a hempen bag, and press them strongly until they yield their juice, which is to be evaporated in flat vessels heated with boiling water saturated with muriate of soda, and immediately reduced to the consistence of thick honey. After the mass is cold, let it be put into glazed earthen vessels and moistened with alcohol. This extract is the form under which Baron Storck introduced wolf'sbane into practice.
No. 76

Helonias Didica.

MELANTHACEÆ.

Melanths.

No. 76.

HELONIAS DIOICA.

Unicorn Root.

Place—United States.
Quality—Not unpleasant.
Power—Tonic, anthelmintic.
Use—Colic, rheumatism, jaundice.

BOTANICAL ANALYSIS.

Natural Order. Coronarias—L. Melanthaceæ. J.

Class VI. Hexandria. Order Trigynia.

Genus. HELONIAS.

From the Greek ἡλώνια, a marsh, where some species grow.

The Essential Characters.

Floral Envelope, or Perianth regular, in two series, each of three segments which are distinct or united at base, generally involute in aestivation.

Stamens. Six, with extrorse anthers.

Ovary. Three-celled, nine—many ovuled. Styles distinct or wanting. Stigmas undivided.

Fruit. Capsule or berry, three-celled, generally with septicida dehiscence.

Seeds. With a membranous testa, and dense fleshy albumen.
HELONIAS DIOICA.

THE SECONDARY CHARACTERS.

THE SPECIFIC CHARACTERS.

Leaves lance-oblong. Generally dioecious.

THE ARTIFICIAL CHARACTERS.

HAMODORACEÆ.

Bloodroots.

ALETRIS FARINOSA.

Star-Grass, Colic Root.

BOTANICAL ANALYSIS.

Natural Order. Coronariæ, L. Hæmodoraceæ, J.

Class VI. Hexandria. Order Monogynia.

Genus. ALETRIS.

From the Greek αλετρις, meal, from the powdery dust with which the plant is covered.

GENERAL CHARACTERS.

Perianth semi-inferior, tubular, with a six-cleft spreading
ALETRIS FARINOSA.

limb, somewhat hexagonal, sebrous and plaited externally.

NATURAL HISTORY.

On account of the great irregularity and confusion with many medical writers on the Unicorn, Unicorn-root, Star-grass, Colic-root, &c., as two American plants of different orders, genera, and species, are simultaneously, commonly, and vulgarly called, it has been determined to designate and describe both under one and the same No. 76, in the Family Flora.

The Helonias Dioicia, Unicorn-root is abundant in some of the Western States, and it is found also in Pennsylvania, New York, and Connecticut. It grows in woodlands and meadows, delighting in a moist situation, and blossoms in midsummer. The root is perennial, rather smaller than the little finger, irregular, from one to two inches long, of a dirty, dark color, very hard, full of little pits, rough and wrinkled, having numerous small darkish fibrous roots, which when deprived of their outside bark somewhat resemble hog's bristles. The end of the caudex or main root often dead or rotten; premorse. Leaves radical, pale, smooth, evergreen, lanceolate in a sort of whorl at the base of the scape. Stem or scape from eight to eighteen inches high, upright furrowed, and terminating in a spike or tassel of white dioecious flowers. Flowers small, very numerous, greenish white, in long, terminal, spicate racemes, which are more slender and weak on the barren plants. Ovaries as long as the linear petals, subtriangular. Capsule three-furrowed, oblong, tapering at the base, opening at the top. The fertile plants are taller, more erect, but with fewer flowers.

The Aletris Farinosa, Star-grass, is found in almost all parts of the United States, growing in poor, dry soils in open situations on hills, prairies, and borders of woods, and flowers in June and July. The root is perennial, small, branched, crooked, blackish outside, brown within, premorse, intensely bitter. Stem or scape round erect, from one to two feet high, naked, except a few scattered bracts ending in a long spike of white, somewhat
scattered flowers, and at base surrounded with a circle of lanceolate, sessile leaves, which spring immediately from the foot and spread on the ground in the form of a star. Hence have originated the popular names of star-grass, blazing star, and mealy star-wort, by which the plant is known in different parts of the country. The leaves are entire, pointed, very smooth, longitudinally veined, and of unequal size, the largest being about four inches in length.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The root of Helonias Dioicia is the part principally used, and is highly celebrated as a tonic, and general strengthener of the system. Dr. Rogers says it relieves colic, stranguary, rheumatism, and jaundice. It affords an excellent female medicine, and has a powerful tendency to prevent abortion, and they who are liable to accidents of this nature, ought to make frequent use of it. Half a tea-spoonful of the powdered root may be taken three times a day, in a gill of warm water, or for ordinary use, a portion of it may be added to the bitter tonic. It is also highly valued in suppressed menstruation.

The Unicorn-root is also an excellent remedy for coughs, consumptions, and all complaints of the lungs, promoting expectoration and insensible perspiration. The constant use of it, however, sometimes makes the mouth sore, when it must be laid aside, and some other expectorant used till the mouth gets well, and then it may be again resumed.

The root of the Aletris Farinosa is the official portion employed as medicine. It is a very bitter and valuable tonic and stomachic, promoting in small doses the appetite and digestion; but in large doses is apt to produce nausea and vomiting. Twelve grains of the powdered root is the largest dose.

The bitterness appears to reside in a resinous matter, which is fully imparted in tincture, to alcohol, which it renders extremely bitter, whilst water is rendered much less so. The tincture becomes turbid by the addition of water.

The star-grass may be given in tincture, decoction or substance, though the first and last forms are undoubtedly the best; or it may be incorporated into cordials or syrups. It is useful in all cases of debility and loss of appetite, fevers, colic, and rheumatism.
No. 77.

CASSIA FISTULA.

Cassia, Purging Cassia, Pudding-pipe tree etc.
LEGUMINOSÆ.

Leguminous Plants.

No. 77.

CASSIA FISTULA.

Cassia, Purging cassia, Pudding pipe tree, &c., &c.

Place—East Indies, Egypt, Arabia.

Quality—Sweet, somewhat nauseous.

Power—Demulcent.

Use—Obstipations of the bowels, nephritic calculi.

BOTANICAL ANALYSIS.

Natural Order. Lomentaceæ—L. Leguminosæ—J.

CLASS X. Decandria. ORDER Monogynia.

Genus. CASSIA.

From the Hebrew Kezioth, rendered by casriaq in the Septuagint, and latinized Cassia.

Synonymes.—Casse (Fr.) Rohnkassie (Ger.) Pypkassie (Dutch.) Cassiever (Dan. Swed.) Polpa di Cassia (I.) Fistularis (Sp.) Ameltas (H.) Suvernaca (Sot.) Konnekai (Tam.) Khyar Sheber (Arab.) Khyar Chirber (Pers.) Drangu (Jav.) Mentus (Malay.) Sonali (Beng.)

THE ESSENTIAL CHARACTERS.

Calyx. Sepals generally five, more or less united, often unequal.

Corolla. Petals five, either papilionaceous or regular, perigynous.

Stamens. Diadelphous, monadelphous or distinct. Anthers versatile.

Ovary. Superior, single, and simple. Style and Stigma simple.
CASSIA FISTULA.

FRUIT. A legume, either continuous (one-celled) or (a loment) jointed into one-seeded cells.

SEEDS. Solitary or several, destitute of albumen.

THE SECONDARY CHARACTERS.

Cassia. Sepals five, scarcely united at base, nearly equal. Petals five, unequal, but not papilionaceous. Stamens ten, distinct. Three upper anthers often sterile; three lower ones beaked. Legume many seeded.

Calyx five-sepalled. Corol five-petalled. Anthers three, lower ones beaked, and on longer incurved filaments. Legume membranaceous.

THE SPECIFIC CHARACTERS.

Cassia Fistula. Trunk from forty to fifty feet high, about the size of a walnut tree. Leaves large, composed of from five to six pairs of oval and acute folicles, from three to five inches long. Flowers large, yellow, in clusters, hanging from the axilla of the leaves.

Leaves in six pairs. Petioles glandless. Legume reniform.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

Cassia Fistula is a native of Egypt and the East Indies, but is now naturalized in the West Indies and South America. It was known to the Arab and Greek physicians of the middle ages, and is supposed to have received its name from its agreeable odor, somewhat resembling that of the celebrated spice.

The tree rises to the height of forty or fifty feet, with a large trunk, covered with a soft, cineritious bark, and is much branched at the top. The leaves are composed of six pairs of ovate, pointed, undulated pinæ, of a pale green color, with many transverse nerves, and peduncled. The stipules are scarcely apparent. The flowers which appear in June are of a golden color, placed upon long pendent terminal spikes. The leaves of the calyx are crenated, blunt and greenish. The petals unequal, spreading and waved. The three undermost filaments are long and incurved. The others exhibit large
CASSIA FISTULA.

anthers, three of which are rostrated, or like the open beak of a bird, at the extremity. The fruit is a long woody, dark-brown pod, about the thickness of the human thumb, and nearly two feet in length, cylindrical, with two longitudinal furrows on one side, and one on the other, and divided into numerous transverse cells, each containing one smooth, oval, yellowish, shining seed, with red lines dividing it longitudinally, imbedded in soft black pulp.

The fruit of the Cassia Fistula is known in commerce by the name of Cassia pods, which are said to undergo a kind of fermentation, to prepare them for keeping. For this purpose they are collected before they are quite ripe, and carried into a close room, in which is prepared a layer of palm leaves and straw six inches thick, on which they are laid, the room closed, and the next day the heap sprinkled with water, and this process repeated. In this way they are treated for forty days till they become black. Those which are brought to this market come principally from the West Indies, packed in casks and cases, but a superior kind is brought from the East Indies, and is easily distinguished by its smaller, smooth pod, and by the greater blackness of its pulp. The heaviest pods, and those in which the seeds do not rattle on being shaken, are the best, and contain the greatest quantity of pulp.

The tree will thrive in loam and peat, and cuttings will root in sand under a hand glass, in moist heat.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The pulp of Cassia Fistula is the only part employed in medicine, it is of a very dark-brown color, of a very faint and sick odor, and of a sweet mucilaginous and sub-acid taste. It is apt to become sour if long exposed to the air, or mouldy if kept in a damp place. It is viscid, almost entirely soluble in water, and partially so in alcohol and sulphuric ether. The watery infusion, which shows a tendency to gelatinize, has when filtered the color of the pulp, and yields a precipitate with alcohol and the solution of the superacetate of lead. The alcoholic and ethereal tinctures are not affected by the addition of water, although when they are evaporated a thin pellicle of resin remains. No alteration is produced in the alcoholic and watery infusions by infusion of galls, nitrate of silver, sulphate of iron,
nor the nitric nor sulphuric acids; but chlorine throws down a yellow-colored precipitate, which is insoluble in ether. Hence there is reason for concluding with Vanquelin that this pulp contains sugar, gelatine gluten, mucus, a small portion of resin, extractive, and some coloring matter.

Cassia pulp is a gentle laxative, and well adapted for children and very delicate females. In small doses it is mild and agreeable, and in larger ones purgative, but from the quantity required to produce this latter effect, it is apt to occasion nausea, flatulence, and griping. To assist its operation and prevent the griping, it is usually conjoined with some neutral salt and an aromatic. It does not appear to possess any advantage over the pulp of prunes, and is not as agreeable. It is, however, seldom used in this country, and as seldom in England.

The root also contains a bitter principle, and has been employed as a substitute for Peruvian bark. It contains a peculiar principle which has been examined by Ca Benton, who regards it as a powerful diuretic. It forms soluble combinations with the mineral acids. The leaves and the flowers are also purgative. Their employment is indicated when in the course of a phlegmasia, it is necessary to keep the bowels open, but their administration is contra-indicated in cases of hypochondria and in atonic affections.

Confectio Cassiae. Confection of Cassia. Take of fresh cassia pulp half a pound, manna two ounces, tamarind pulp an ounce, syrup of roses half a pound. Bruise the manna, then dissolve it in the syrup by the heat of a water bath, and having mixed in the pulp, evaporate down to a proper consistence.

Electuarium Cassiae Fistule. Electuary of Cassia. Take of cassia pulp four parts, tamarind pulp, manna, of each one part, syrup of damask roses four parts. Bruise the manna in a mortar, and dissolve it in the syrup by means of a gentle heat, then add the pulps, and by a continued heat reduce the mixture to a proper consistence.

Or another. Take of freshly extracted cassia pulp half a pound, manna two ounces, tamarind pulp an ounce, syrup of orange half a pound. Bruise the manna, then dissolve it in the syrup by means of a moderate heat and add the pulp; lastly, evaporate slowly the mixture to a proper consistence.

This electuary is gently purgative, and is used to relieve habitual costiveness, as a purge for children, and as a vehicle for the exhibition of other more powerful medicines.
No. 78.

PANAX QUINQUEFOLIUM.

Ginseng, Red-berry, Five-Fingers &c.
ARALIACEÆ.

Araliads.

No. 78.

PANAX QUINQUEFOLIUM.

Ginseng. Red-berry, Five fingers, &c., &c.

Place—North America.
Quality—Sweetish, aromatic.
Power—Stimulant, antispasmodic.
Use—Nervous affections, debility.

BOTANICAL ANALYSIS.

Natural Order. Hederaceæ—L. Araliaceæ—J.

Class V. Pentandria. Order Digynia.

Genus. PANAX.

From the Greek πάνας all, and Ἀμέρικα a remedy supposed to be a panacea or universal remedy.

Synonyms.—Ginseng d’Amerique (Fr.) Ginsang (It.) Kraftwurzel (Ger.)

The Essential Characters.

Calyx. Superior, entire, or toothed.
Corolla. Petals five—ten deciduous, rarely wanting, valvate in aestivation.
Stamens. Equal in number to the petals, and alternate with them. Anthers introrse.
Ovary. Crowned with a disk, two or many celled. Ovules solitary. Styles as many as the cells.
Fruit. Baccate or drupaceous, of several one-seeded cells.
PANAX QUINQUEFOLIU!

THE SECONDARY CHARACTERS.

Polygamous, umhelled. Involucre many-leaved. Calyx five-toothed in the perfect flower, superior. Berry heart-form, two or three seeded. Calyx in the staminate flower entire.

THE SPECIFIC CHARACTERS.

Panax Quinquefolium. Root fusiform. Leaves three, verticillate, five foliate. Leaflets oval, acuminate, serrate, petiolate. Pedicles of the umbel rather shorter than the common petioles.

Root fusiform. Leaves ternate, quinate. Leaflets oval, acuminate, petioled, serrate.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

The Ginseng is a perennial plant indigenous to North America and Chinese Tartary. It occurs in most parts of the temperate portions of the United States, but is most common to the westward, being almost eradicated in the Atlantic States. It is usually found at the roots of trees, in rich soil, especially in hilly situations. It flowers in June and July. The hardy species thrive well in light rich soil, the others grow in loam and peat, and are increased by cuttings in sand under a handglass, but from some trials that have been made when attempted to be cultivated, they have occasionally not been found to succeed well.

The Panax Quinquefolium is a high-sounding title, meaning little less than that the plant which bears it is the long sought universal elixir, a remedy for all things. In Chinese Tartary the plant has been gathered and employed as an invaluable drug from time immemorial. The roots which are said to bear some resemblance to the human form, are gathered and dried and enter into almost every medicine used by the Tartars and Chinese.
The Asiatic kind is found principally in that country between 39° and 47° north latitude, in the same kind of localities as in this country. The collection of it is a monopoly enjoyed by the Emperor, who guards the districts in which it grows with great vigilance. Each individual who is employed to collect it, delivers two catties of the best roots gratuitously, and is paid its weight in silver for all over this quantity. This insures the Emperor about 20,000 catties at about one-fourth of their market price.

Notwithstanding that large quantities of this root are exported from this country to China, and being there recognized as the true Ginseng, and that most botanists have declared that the plants are identical, yet, it is now admitted by some of the best authorities, that they are distinct species, though very closely allied. The mistake originally arose from the Jesuits, some of whom becoming acquainted with the plant in Tartary, thought that they recognized it in the American species; and in consequence, it was sent to China, where, although considered an inferior kind, it met with a ready sale. But the market has fluctuated very much, as from a fancied deterioration in the article, or from some other cause, it sometimes has not paid the charges of exportation.

The following is a description of the American species. Root usiform, whitish and thick, often branched, fleshy, with transverse wrinkles. Stem erect, one to two feet high, round, smooth, green below, purplish red above, divided at top into three petioles, having a central peduncle at their base bearing a simple umbel. Leaves on round and smooth footstalks. The petioles are long ind commonly furnished with five, but sometimes with three or seven obovate leaflets. These are ovate, acuminate, doubly serrate, dark green above, paler beneath, smooth on both sides, supported on partial footstalks, which, like the general ones, are tinged with red at their insertion. The flowers are small, yellowish, on short pedicels. The barren ones borne on separate plants have larger petals and an entire calyx. The fertile ones are succeeded by berries of a bright scarlet color. The fruit is red, baccate reniform, with two semi-globose seeds.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

Ginseng has a peculiar and rather pleasant camphorated smell; the taste is sweet and pungent, with a slight degree of aromatic
PANAX QUINQUEFOLIUM.

bitterness. It is a fine, gentle and agreeable stimulant, also restorative and antispasmodic. No analysis has been made of it; but Rafinesque states that the root owes its active properties to a peculiar substance very similar to camphor, which he calls Panacine. He says that this is white, pungent, soluble in alcohol and water, and more fixed than camphor; it contains also a volatile oil, sugar, mucilage, resin, &c.

According to the Chinese authorities, the use of this plant nourishes and strengthens the body, clears the judgment, removes all nervous affections, gives a vigorous tone to the human frame, and in short is an effectual remedy in all complaints. Osbuk, in his Voyage to China, (Svo. London, 1781,) says that he never looked into the apothecaries’ shops but they were always selling Ginseng; that both poor people, and those of the highest rank made use of it, and that they boil half an ounce in their tea or soup every morning as a remedy for consumption and other diseases. Father Jarroux relates that the most eminent physicians of China have written volumes on the medicinal powers of this plant; asserting that it gives immediate relief in extreme fatigue, either of body or mind, that it dissolves pituitous humours and renders respiration easy; strengthens the stomach, promotes appetite, stops vomiting, removes hysterical, hypocondriacal and all nervous affections; giving a vigorous tone of body even in extreme old age. It is given by them in a variety of forms, and the only ill result that it is capable of producing, is a tendency to haemorrhage when it is used in very large doses. It may be stated also that other persons who have used the Chinese root are of opinion that many of the virtues attributed to it are real, and that it is a highly valuable remedy.

On the other hand, the trials made with it, both in this country and in Europe, show that the American species gives no proof of such efficacy. It is merely a gentle stimulant, with some antispasmodic powers, and is of little estimation. No fair and extended trial of it, however, has been made; and as regards the Chinese kind, it is difficult to come to any just conclusion, for it can scarcely be possible that any article so long in use and so highly prized, can be wholly worthless; and yet there is much reason to believe that its beneficial effects are rather to be ascribed to fashion and the effects of imagination, than to any intrinsic virtues in the root.

The French inhabitants of Lower Canada have for many years used this root for curing the asthma, and as a stomachic.
No. 79.

LIMICIFIGA RACEMOSA.

Black Snake root, Black Cohosh, Squaw root &c.
RANUNCULACEÆ.
Crowfoots.
No. 79.

CIMICIFUGA RACEMOSA.

Black Snake Root, Black Cohosh, Squaw Root, &c.

Place—Europe and America.
Quality—Bitter, nauseous.
Power—Tonic, stimulating.
Use—Rheumatism, affections of the lungs, chorea, &c.

BOTANICAL ANALYSIS.

Natural Order. Multisilique—L. Ranunculaceæ,—J.

Class XIII. Polyandria. Order Di-Pentagyna.

Genus. CIMICIFUGA.

From the Lat. cimex, a bug, and fuga, to drive away, indicating certain virtues a species is supposed to possess, or alluding to its offensive odor.

Synonymes.—Cimicaire (F.) Das wanzenkraut (Ger.) Wantsdryver (D.) Tægeurt (Dan.)

The Essential Characters.

Calyx. Sepals, mostly five, sometimes three, four or six, mostly deciduous, and imbricated in aestivation.

Corolla. Petals, three—fifteen, hypogynous, sometimes irregular or wanting.

Stamens. Indefinite, or numerous, distinct, hypogynous. Anthers adnate or innate.

Ovary. Indefinite or numerous, rarely solitary, or few, distinct seated on the torus.
CIMICIFUGA RACEMOSA.

Fruit. Either dry achenia, or baccate or follicular. Embryo minute, at the base of horny or fleshy albumen.

THE SECONDARY CHARACTERS.

CIMICIFUGA. Sepals, four—five. Petals, three—eight, sometimes wanting. Stamens, indefinite or numerous. Anthers, in trorse. Follicles, one—eight, oblong, many seeded.

Sepals, four or five. Petals, three to five, concave or unguiculate (sometimes by abortive growth fewer or none if the genus MACRIFY is included. Carpels, one to eight, follicle like, many seeded.

THE SPECIFIC CHARACTERS.

THE ARTIFICIAL CHARACTERS.

Class Polyandria. Stamens, twenty or more, arising from the receptacle (hypogynous). Order Di-Pentagynia. Leaves never peltate. Herbs, with acrid, colorless juice.

NATURAL HISTORY.

The Black Snako Root is common all over the United States from Maine to Florida, Louisiana and Missouri, growing in open woods and hill sides. It flowers in June and July, when its long, white racemes are very conspicuous. The plant is of easy culture. It has a heavy, unpleasant smell when handled, and a disagreeable, nauseous taste.

There are several varieties of this genus, but they are not sufficiently distinct to require notice, and they continue to interchange their species according to the different views of botanists. This plant was placed in the genus Actaea by Linnaeus, and removed by Pursh to CIMICIFUGA, also a Linnaean genus, in this he has been followed by most modern botanists, although it does not agree with the characters of the latter, better than with
CIMICIFUGA RACEMOSA.

those of the former. Rafinesque made it the type of his genus MACROTRYS, and altered the specific name to ACTOCOIDES; this generic change was approved in part by De Candolle, who recognized it as a sub-genus of ACTAEA. Subsequently, however, Rafinesque bestowed an entire new appellation on it, describing it in his Medical Flora as BOTROPHIS SERPENTARIA. Much difference of opinion after all, exists among botanists with regard to the true limits of this genus, some rejecting from it all the monogynous species, whilst others include them, merely making of them a separate section. The genus BOTROPHIS of Rafinesque, founded on the single pistil, and single dehiscent capsule would now be adopted, were it not that the officinal species is still recognized in the United States Pharmacopœia, as CIMICIFUGA, as well as by many of our best botanical authorities.

Root perennial, blackish, large, with numerous long fibres-Stem simple, straight, from three to six feet high, smooth, angular, furrowed. Leaves few and alternate, one nearly radical, is very large, decomposed, three pinnate, the upper one is bi-pinnate Leaflets sessile opposite, three to seven, dentate or incised. Flowers in a terminal raceme, from one to three feet long. Calyx, four or five leaved, white. Petals, from four to eight, thickish, sometimes wanting. Stamina numerous. Pistils, from one to five. Capsule, oblong, many seeded. Seeds squamous.

The root, as found in the shops is composed of a rough tuberculated head and numerous radicals, seven inches long, of a black color externally, white internally. The radicals are extremely brittle and liable to be separated. The odor is feeble and earthy, the taste bitter and astringent, leaving an impression of acrimony on the palate. The sensible properties depend upon the time when the root is collected, and the mode of drying and preserving it. It should be collected late in the summer or in the autumn.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The CIMICIFUGA RACEMOSA has been frequently analysed by several eminent and respectable physicians and druggists, according to whom the following substances have been detected. Fatty matter, gum, starch, resin, tannin, wax, gallic acid, sugar, oil, black coloring matter, green coloring matter, lignin, and salts of lime, iron, magnesia and potassa. The experiments, however, led to no decided conclusion as to the nature of the active principle.
The first account we have of the exhibition of this root as a remedial substance is given by the late Professor Barton who considered it a valuable astringent.

Dr. Garden, of Virginia, may be said however to have been the first who particularly drew the attention of the profession to its properties in phthisis, pulmonalis, and other affections, and he speaks of the beneficial effects in the highest terms. He has shown that this medicine, like digitalis, affected the brain and operated powerfully upon the secretory organs and absorbent system. When exhibited in large doses it prostrates to a distressing degree, producing nausea, vertigo, anxiety, great restlessness, pains in the extremities, &c. These effects are, however, only temporary.

Dr. N. Chapman states:—"besides the astringent property of this root which I have never been able to discover in any degree, it is expectorant, narcotic, anti-spasmodic, diaphoretic, and in a large dose, emetic. Given so as to effect sensibly the system, we find first some nausea, followed by great freedom of expectoration, and more or less relaxation of the surface, with slight nervous tremors, and vertiginous affections. The pulse during this state is considerably lowered, and is apt to remain so for some time." He moreover adds, "It is alleged in consumption to lessen the frequency of the pulse, to allay the cough, to quiet the mobility of the system, and particularly to subdue hectic fever. How far this is true my own experience does not enable me to say."

Dr. Mears, who tried the medicine upon himself, has published a number of cases, tending to prove its great efficacy and utility in catarrhal affections generally, rheumatism and violent coughs, and that it is also a valuable astringent in bowel complaints of children.

In chorea it is strongly recommended. Dr. Young, several years ago brought CIMICIFUGA RACEMOSA before the profession as a good remedy in this disease, and his results have to a considerable extent been verified by other physicians. Professor Wood found that a case under his care yielded to it after the failure of purgatives and metallic tonics. The latter author exhibited it satisfactorily in a case of convulsions occurring periodically, and connected with uterine disorder. In these cases, however, the precise mode of its operation is obscure.

Black Snake Root may be given in powder, in doses of half a drachm two or three times daily.
No 80.
CHLONE GLABRA.
Balmony. Snake head. Shell Flower &c.
SCHROPULARIACÆ.

Figworts.

N° 80.

CHELONE GLABRA.

Snake Head, Salt Rheum weed, Balmony, Shell-flower.

Place—North America.
Quality—Unpleasant, sickening.
Power—Tonic, laxative.
Use—Fever, jaundice, debility.

BOTANICAL ANALYSIS.

Class XIV. Didynamia. Order Angiospermia.

Natural Order. Personatæ.—L. Schropulariaceæ,—J.

Genus. CHELONE.

From the Greek χελώνη, a tortoise, to the back of which the helmet of the present genus has been fancifully compared.

Synonyms.—Galane or tortue (F.) Die schildblume (Ger.) Schildbloem (D.) Skjoldblomster (Dan.) Sköldblomster (Swed.)

THE ESSENTIAL CHARACTERS.

Calyx. Sepals, four or five, unequal, more or less united at base, inferior, persistent.

Corolla. Bilabiate, personate or otherwise irregular, the lobes imbricate in aestivation.

Stamens. Four—didynamous rarely with the rudiment of the fifth, sometimes two only, the three others either rudimentary, or wholly wanting.
Fruit. Capsule two-celled, two-valved, with central placenta.
Seeds. Indefinite, albuminous. Embryo straight.

THE SECONDARY CHARACTERS.

Calyx five-cleft or five-sepalled, three-bracted. Corol. Ringent, inflated, the upper lip emarginate-obtuse, under lip slightly three-cleft. The rudiment of a smooth filament, between and shorter than the two tallest stamens. Anthers woolly. Capsule two-celled, two-valved. Seeds with membranaceous margins.

THE SPECIFIC CHARACTERS.

Leaves, opposite, lance-oblong, acuminate, serrate. Spikes, terminal, densely-flowered.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

Chelone is a North American genus, consisting of but few species, all herbaceous plants with opposite leaves, and sub-imbricately spiked, terminal flowers having the lower lip of the corolla bearded internally. They differ in the form and insertion of the leaves and in the color of the flowers, which vary from pure white to purplish. They are all handsome plants, with singular ornamental and large blossoms, but inodorous, and shaped much like the head of a snake, the mouth open and tongue extended. They abound in most parts of the United States in wet situations, near brooks and waters, and blossom from July until late in the Autumn. They are of easy culture in loamy soil, or loam and a little peat, and propagated by cuttings or by dividing the root.

The root of the Chelone Glabra is perennial. Stem erect from two to four feet high, somewhat quadrangular. Leaves
opposite, of a dark and shining green above, with irregular serratures and sessible or nearly so. Flowers terminal in a dense short spike. Each flower sessile, and furnished with three bracts, which are ovate, acute, and entire. Calyx with five unequal imbricated segments, oblong and obtuse. Corolla white, often tinged with red, inflated, contracted at the mouth, with short gaping lips. Filaments hairy. Style long, exsert, bending downwards.

For medical purposes, the plant should be collected in clear, dry weather, and as soon as it is in bloom, as the leaves frequently become mildewed after that time. It should be dried in the sun, or in a warm chamber, or loft, and carefully guarded from a moist, or damp atmosphere, or it will acquire a dark or black color.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The best detailed account of the properties of Chelone Glabra is given by Rafinesque, who appears to have been the first also who introduced this plant into notice. He was indebted to Dr. Lawrence of New Lebanon, and the Doctor to the Indians and Shakers.

The whole plant may be used, but the leaves only are preferred; these are extensively bitter, and furnish one of the most important and strongest ingredients to the best bitters, without any aromatic smell, and very little astringency. They are said to be tonic, cathartic, and hepatic, but no certain information has been afforded on the subject. No analysis has been made of them, but they appear to contain gallic acid, a peculiar resinous substance, similar to pierine and aloes, of a black color, and very bitter taste, lignine, &c. They communicate their properties to both water and alcohol. Wine is the best menstrum, but it becomes intolerably bitter.

Snakehead is useful in many diseases, fevers, jaundice, hepatitis, eruptions of the skin, &c. In small doses it is laxative, but in full doses, it purges actively, acting powerfully on the liver, and removing the yellowness of the skin in jaundice and liver diseases. The dose is a drachm of the powdered leaves three times a day. The wine of it in small repeated doses has nearly the same effect, although neither so speedily or violently. The Indians use a strong decoction of the whole plant in a variety of complaints, and it is held in much esteem by them.
CHELONE GLABRA.

The leaves make a vermifuge, which is safe in common cases. It should be administered in infusion, continued for a time, and followed by a suitable purge. An ounce of the dried leaves is sufficient in most cases for children.

"As I have discovered," says Dr. Curtis of Ohio, "in the snakehead no tendency either to open or constipate the bowels, I call it a pure, neutral bitter. As bitterness is in its nature stimulant, it is of course deobstrucent, and finally restorative. It should therefore be used freely as a general equalizer of the circulation and purifier of the blood."

The following formula is highly recommended:

Take of pulverized poplar-bark six pounds, golden seal, cloves, ginger, and prickly-ash bark, each a pound and a half, snakehead a pound, cayenne three quarters of a pound, and sugar seven pounds. Mix thoroughly and sift. If the prickly-ash is omitted, the quantity of cayenne may be somewhat increased. It is usual to add about one-twentieth part of cayenne to the tonic or restorative preparation.

The above preparation is found to be one of the best medicines in use for restoring the tone of the digestive organs. It is an excellent remedy in jaundice, dyspepsia, worms, flatulency, piles, headache, giddiness, pains in the stomach and bowels, diarrhea, gravelly complaints, strangury, gonorrhœa, fluor albus, heart-burn, rickets, mercurial salivation, consumption, and the whole train of chronic diseases. It is a laxative, and keeps the bowels open, unless they are obstinately costive. Its use would be improper during the continuance of a violent febrile or inflammatory affection, but as soon as the disease is subdued it may be freely and beneficially employed. In the form of a weak tea well sweetened, it is a refreshing drink for weak patients, and is grateful also to those in health during the hot weather of summer. If food occasions distress, a dose of it will generally afford relief.

The proper time to take these bitters is about a quarter of an hour before each meal. Take a moderately heaped tea-spoonful of the powder, and double the quantity of sugar, stir them together, add a tea-cupful of boiling water, and drink the tea when sufficiently cool. If the patient is obliged to be in the open air, a tea-spoonful of the powder, with sugar to suit the taste, should be mixed in half a wine-glass of cold, or milk-warm water, and taken in substance. The medicine need not be used after the appetite is fully restored.
No 61.

Hypericum perforatum.

Common St. John's-wort.
HYPERICACEAE.

St. John's-worts.

No. 81.

HYPERICUM PERFORATUM.

Common St. John's-wort.

Place—Europe.
Quality—Balsamic.
Power—Astringent, anthelmintic.
Use—Hemoptysis, hypochondriasis, phthisis, and ulcers, tumors, &c.

BOTANICAL ANALYSIS.

Natural Order. Rotaceæ.—L Hypericaceæ.—J.

Class XVIII. Polyadelphia. Order Polyandria.

Genus. HYPERICUM.

A name of unknown meaning. Υπάρχει, Dioscorides.

Synonymes.—Le millepertuis (Fr.) Das Johannis Kraut (Ger.) St. Jans Kruid (Dutch.) Pilatro (L) Corazoncillo (Sp.) Melfurade (Port.) Swioboi (Russ.)

THE ESSENTIAL CHARACTERS.

Calyx. Sepals, four—five, distinct or cohering, persistent, unequal, dotted.

Corolla. Petals four—five, hypogynous, aestivation twisted, veins oblique, dotted.

Stamens. Hypogynous, indefinite in three or more parcels. Anthers versatile.

HYPERICUM PERFORATUM.

FRUIT. A capsule or berry, many seeded
SEEDS. Indefinite, minute.

THE SECONDARY CHARACTERS.

HYPERICUM. Sepals five, connected at base, subequal, leaf-like. Petals five, oblique. Stamens indefinite, or numerous (sometimes few) united at base into three—five parcels with no glands between them. Styles three—five, distinct or united at base, persistent.

Calyx five—parted, divisions equal, subovate. Corol five—petalled. Filaments often united at the base in three or five sets. Styles two—five. Capsule membranaceous, roundish, with a number of cells equal to the number of styles. The bases of the filaments are often in groups, when they are not united.

THE SPECIFIC CHARACTERS.

HYPERICUM Perforatum. Flowers with three styles. Stem two-edged, branched. Leaves elliptical, with pellucid dots. Sepals lanceolate, half as long as the petals. Segments of the calyx lanceolate.

THE ARTIFICIAL CHARACTERS.

CLASS POLYADELPHIA. Stamens united by their filaments into more than two sets. ORDER POLYANDRIA. Leaves opposite punctate. Flowers yellow. Fruit a membranaceous capsule.

NATURAL HISTORY.

This extensive Genus Hypericum, contains herbaceous, or shrubby species, found in all parts of the world, and of which between thirty to forty are natives of North America. They all possess medicinal properties in a greater or less degree, proportionate to the abundance or otherwise of the oil, bearing glands of the flowers and leaves. Certain species having a berry instead of a capsular fruit, have been separated under the generic name of Vismia. These are principally natives of tropical climates, and furnish a yellow product very analogous to gamboge.

Hypericum Perforatum is a hardy plant, a native of Europe, but has been introduced on this continent, prevailing almost everywhere on pastures and dry soils both in Canada and throughout the United States, much to the annoyance of farmers,
as it has become very abundant, and is not only very difficult to eradicate, but extremely exhausting to the ground. It has a peculiar balsamic odor. Its taste is bitter, resinous and somewhat astringent. The root is perennial, fusiform and tortuous. The stem is ascipital, about eighteen inches in height, much branched, curved below, and erect above. The leaves are closely sessile, of an ovate elliptical shape, of a light green color, and conspicuously marked with numerous pellucid dots. The flowers are of a bright yellow color, arranged in a terminal corymb. The calyx is persistent, and is composed of five acute-lanceolate sepals, united at base. The corolla is of five-ovate, obtuse, sessile petals, much longer than the sepals, of a yellow color, with numerous dark glandular spots at the edges. The stamens are numerous, and divided into three sets. The anthers are small. The styles are three with very small stigmas. The fruit is a somewhat globose capsule, with three cells, and opening naturally by three valves. Seeds numerous, very small.

Everlasting John's-wort is apt to flourish undisturbed and fill the earth with seeds or roots, in readiness to spread and grow whenever the earth is moved for their reception. This plant has taxed the ingenuity of vigilant farmers in effecting its removal. It should never be allowed to perfect its seeds, and if they are ever so permitted, the farmer has suffered an enemy to steal a march upon him, which may require much time and labor to subdue.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

No complete analysis of the Hypericum Perforatum has ever yet been made, but from the experiments of Mr. Blair (Am. Jour. Pharm. ii. 23.) its active constituents appear to be an acrid, resinous substance, pervading the whole plant, a red oil, furnished by the gland on the petals, and some tannin. Hypericum is not recognized as officinal by the United States Pharmacopoeia, but is so by many of the European authorities as a constituent of a variety of syrups, tinctures, &c. The St. John's-wort was, notwithstanding, held in high estimation by the earlier writers on the Materia Medica, and numerous virtues attributed to it particularly as a febrifuge and anthelmintic. "The leaves, flowers, and seeds stamped (says Gerard, 1590), and put into a glass with olive oil, and set in the warm sun for several weeks together, and then strained from
those herbs, and the like quantity now put in and sunned in like manner, doth make an oil of the color of blood, which is a most precious remedy for deep wounds and sores, and those that are through the body, for sinews that are pricked, or any wound made with a venomed weapon. I am accustomed (continues Gerard), to make a compound oil hereof, the making of which, any one shall receive at my hands, because that I know in the world there is not a better, no, not natural balsam itself, for I dare undertake to cure any such wound as absolutely in each respect, if not sooner and better, as any man whatsoever, shall or may with natural balsam."

The plant still enjoys much reputation in some parts of Europe in the treatment of many diseases, hysteria, mania, intermittent fever, dysentery, gravel, hemorrhages, pectoral complaints, worms, and jaundice. It was also formerly held in high estimation for the cure of demoniacs, and the superstition still lingers among the vulgar in some countries. At present the plant is scarcely used except as a domestic remedy. The flowering summits are the parts employed, though the unripe capsules are possessed of the same virtues, in an equal degree, and the seeds are said to be even stronger. It is difficult to ascertain its exact value as a remedy, but from its sensible properties, and from the character of the complaints in which it has been thought useful, it may be considered independently of its astringency, as somewhat analogous in medicinal power, to the turpentines. Whatever may be the real value of this plant however, as a medicinal agent, it deserves attention, and that a fair trial should be made of it, the testimonies in its favor are so strong that it can scarcely be as inert as is now supposed, and as is observed by Cullen (Mat. Med., 173), "we should not be so audacious as to neglect it, for by the sensible qualities it appears active, and there are many well vouched testimonies of its virtues, particularly of its diuretic powers."

St. John's-wort is said to exercise an injurious effect on cattle by inflaming the skin wherever the hair is white. Although this belief is very general, it is by no means certain, that the injury is owing to this plant. Is it not rather attributable to a species of Euphorbia which in almost all cases is found growing where the Hypericum abounds, the acrid juice of the former plant being fully capable of causing inflammation, whilst the oil furnished by the glands of the latter, and which is the active principle of the plant, is celebrated for its vulnerary powers.
No. 82
Guaiacum officinale
Lignum vitae, Guaiacum.
RUTACEÆ.

Rue worts.

N° 82.

GUAIACUM OFFICINALE.

Lignum-vitæ, Guaiacum.

Place—Jamaica, Hispaniola.

Quality—Drying, somewhat acrid.

Power—Aperient, purifying, sternutatory.

Use—The bark and resin in syphilis, leucorrhœa, gout, scabies.

BOTANICAL ANALYSIS.

Natural Order. Gruinales—L. Rutaceæ,—J.

CLASS X. Decandria Order Monogynia.

Genus. GUAIACUM.

From Guaiac, the name given to the tree by the natives of Guiana.

SYNONYMS.—Gayac, Gomme-resin de Gayac (F.) Gerreiner Franzosenholz, Guajak-gummi (G.) Pokhout (Dutch.) Franzostrace (Dan.) Franzosenholts (Sweéd.) Guajaco, Gomme-resina di Guajaco (L) Guayaco (S.) Guajaco (Port.)

THE ESSENTIAL CHARACTERS.

Calyx. Sepals, four—five.

Corolla. Petals, four—five, rarely wanting, or none.

Stamens. As many, or twice or thrice as many as petals inserted on the outside of a cup-like disk.

Ovary. Three—five lobed, three—five celled. Styles united or distinct only at base.

Fruit. Usually separating into its component, few-seeded carpels.

GUAIACUM OFFICINALE.

THE SECONDARY CHARACTERS.

THE SPECIFIC CHARACTERS.

Guaiacum Officinale. Leaves, opposite. Peduncles axillary one to three together, one flowered, filiform, minutely puberulous. Sepals five. Petals, five thrice the length of the sepals, oblong, bluish, blue, hairy. Filaments, ten. Anthers, bifid at the base, arcuate, yellow. Fruit, a fleshy capsule.

Leaves bijugate. Leaflets sessile, more or less obovate, rounded at the apex, nerved, glabrous. The common petiole terete, channelled above. Peduncles axillary, one to three together, germinate.

THE ARTIFICIAL CHARACTERS.

Class Decandria.—Stamens ten. Order Monogynia. Fruit, not a legume. Leaves not sensitive. Calyx five—cleft, unequal. Petals five, inserted into the calyx. Capsule angular, three or five celled.

NATURAL HISTORY.

The Guaiacum is a native of the West India islands, growing in Cuba, St. Domingo, Jamaica and the warmer parts of America. It rises from forty to sixty feet high, and is four or five in circumference with crowded flexuose branches. The bark is thick and smooth, and of a grayish color. The wood is exceedingly hard. It is known as the Lignum-vitae of commerce, used by turners in the fabrication of articles requiring density and strength. The leaves are abruptly pinnate, consisting of two or three pairs of smooth, shining, veined, obovate, dark green leaflets, almost sessile. The flowers are pedunled in a kind of umbels which spring from the divisions of the smaller branches. The calyx consists of five concave, oblong, blunt, spreading, unequal, deciduous leaves. The petals are five, of a blue color, elliptical, concave, and spreading. The stamens are erect and villous, with yellowish hooked anthers. The germen is oval, with a short style and simple stigma. The capsule is subtur-
binate, on a short pedicel, smooth, and of a pale ferruginous hue, pentagonal, with ribbed angles, and five—celled, but two or three of the cells are often abortive. The seeds are solitary.

All the parts of this tree possess medicinal qualities, but the wood and the peculiar substance afforded by it, are the only parts used. The virtues of the wood depend altogether on the peculiar matter it contains. This is spontaneously exuded from the tree, and is called native gum, it concretes in tears, which are semi-pellucid and very pure, but the greater part of it is obtained by making incisions into the trunk, or as it is termed, jagging the tree. This operation is performed in May, and the juice which flows copiously is concreted by the sun. It is also obtained by sawing the wood into billets, and boring a hole longitudinally through them, so that when one end of a billet is laid on a fire, the guaiac, melting runs through the hole from the opposite end, and is collected in a calabash. Boiling the chips or raspings in salt and water, also separates the guaiac, which as it rises to the surface may be collected by skimming.

The wood is brought to market either in large solid pieces which weigh from four to five cwt. each, and are covered with a yellowish alburnum, or it is already rased.

The guaiac, or gum as it is improperly termed, arrives in casks and mats, the former containing from one to four cwt., the latter generally less than one cwt. each.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The wood of Guaiacum is in-oderous, but when heated it emits an aromatic odor, and the taste is bitterish, sub-acrid, and biting. It is heavier than water, its specific gravity is 1,333, externally yellowish and internally of a blackish brown color mixed with green streaks. Its goodness may be ascertained by exposing it to the fumes of nitrous acid, which give it a bluish green color, if it be good, yet the decoction is not affected by nitrous acid. The resin or guaiac has a fragrant odor, with scarcely any taste, but occasions, when swallowed, a sensation of heat in the throat. It has a resinous aspect, is of a greenish brown color, externally and internally presents a mixture of greenish, reddish, and brownish tints. It is somewhat translucent, breaks with a vitreous fracture, and is easily reduced to a powder which is grey at first, but becomes green in a short time when it is exposed to the air and light, a change which appears to depend on the absorption of oxygen.
The specific gravity of guaiac is 1.2289. It is sometimes adulterated with common resin and manchinal gum. The former is detected by the turpentine emitted when the suspected guaiac is thrown on hot coals; and the latter by adding to the alcoholic solution a few drops of sweet spirit of nitre, and diluting with water the guaiac is precipitated, but the adulteration floats in white striæ.

Both the wood and the guaiac are stimulant, diaphoretic, diuretic, and purgative. The wood was introduced into Europe by the Spaniards, as a remedy for lues venera, in 1508, by Gonsalvo Ferrand, and gained much celebrity from curing Ulrich Van Hutton, but it had long before been used for the same purpose by the natives of St. Domingo, and it is not certain that Van Hutten's case was one of pure syphilis, as he had been suffering from the disease from the age of nine years. It obtained so much reputation, however, that the exhibition of mercury was discontinued for a considerable time, and even in the eighteenth century its specific powers over this disease were maintained by Boerhaave, but frequent disappointments, and more correct observations have shown that it possesses no powers of eradicating the venereal virus, and that it is useful only after a successful mercurial course, for repairing the strength and vigor of the system, "and where a thickened state of the ligaments, or of the periosteum, remains, or where there are foul, indolent ulcers, or in suspending the progress of some of the secondary symptoms for a short time, as ulcers of the tonsils, eruptions and nodes. The decoction of the wood has been found more useful in cutaneous diseases, serofulvous affections of the membranes and ligaments, and in ozæna. The guaiac itself is an efficacious remedy in chronic rheumatism, and arthritic affections, as well as those diseases for which the decoction of the wood is usually given, and in every respect it may be regarded as the active ingredient of the wood. Its sensible effects are a grateful sense of warmth in the stomach, dryness of the mouth, and thirst, with a copious flow of sweat, if the body be kept externally warm, or if the guaiac be united with opium and antimonials, but when the body is freely exposed, instead of producing diaphoresis, it augments considerably the secretion of urine. It may be exhibited either in substance or in tincture. This dose is from ten grains to half a drachm, in the form of pills, or of bolus, or made into an emulsion with water by means of mucilage or yolk of egg. Larger doses purge.
No. 83
TANACETUM VULGARE
Tansy, common tansy.
COMPOSITÆ.

Asterworts.

N°. 83.

TANACETUM VULGARE.

Tansy, Common Tansy.

Place—Europe.
Quality—Bitter.
Power—Tonic, stomachic, anthelmintic.
Use—Dyspepsia, hysterics, intermittents, worms, gout, &c.

BOTANICAL ANALYSIS.

Natural Order. Composite Discoideæ.—L. Corymbiferæ—J.

Class XIX. Syngenesia. Order Polygamia superflua.

Genus. TANACETUM.

An alteration or corruption of a privative and θανάτος death, a plant which does not perish, or possess durable flowers.

Synonymes.—Tanassie (F.) Rheinfarn (G.) Worm Kruid. (Dutch.) Rhreinfan (Dan.) Renfana (Sweed.) Kivist wrotyczowy (Pol.) Tanaceto (I.) Atanasia (S.) Tanasia (Port.) Dikajariabina (Russ.)

The essential characters

Calyx. Closely adherent to the ovary. The limb wanting, or membranaceous, and divided into bristles, hairs, &c., called pappus.
TANACETUM VULGARE.

Corolla. Superior, consisting of five united petals, either ligulate or tubular.

Stamens. Five alternate with the lobes of the corolla. Anthers cohering into a cylinder.

Ovary. Inferior, one-celled, one-ovuled. Style two-cleft, the inner margins of the branches occupied by the stigmas.

Fruit. An achene, dry, indehiscent, one-seeded, crowned with the pappus.

THE SECONDARY CHARACTERS.

TANACETUM. Involucre hemispherical, imbricate, the scales all minute. Receptacle convex, naked. Pappus a slight membranous border. Achenia with a large epigynous disk.

THE SPECIFIC CHARACTERS.

Leaves, doubly pinnate, gash—serrate. In the variety TANACETUM CRISPUM, double tansy. The leaves are crisped and dense.

THE ARTIFICIAL CHARACTERS.

Class Syngenesia. Stamens five, cohering by the tips of their anthers. Order Polygamina Superflua. Herbaceous plants. Flowers, or florets, collected into dense heads (compound flowers). Corollas monopetalous of various forms.

NATURAL HISTORY

Tansy is a native of Europe, and was a favorite plant with old King Charlemagne, who took considerable pains that it should be cultivated in his domains. It is, however, naturalized in many parts of the United States, and grows wild on hills, and by the sides of roads and hedges, and in old fields. It flowers from July to September. It is also cultivated in gardens as well for medicinal and culinary, as ornamental purposes. There are three varieties, the common, which answers best for the first of the
above purposes, the curled which is generally preferred for the second, and the variegated which is chiefly used for ornament.

Tansy may be propagated in spring or autumn by rooted slips, or by dividing the roots into several sets, plant them in any compartment of the kitchen or physic garden, from twelve to eighteen inches asunder. The plant continues for several years, producing abundant tufts of leaves annually. As they run up in strong stalks in summer, these should be cut down to encourage a production of young leaves low on the stem.

Tanacetum Vulgare is a perennial herbaceous plant, the root is creeping, sending up stiff, erect stems, about two feet in height, leafy, obscurely hexagonal and striated, with alternate leaves, doubly pinnatifid, acutely cleft, somewhat downy on the under side, cased at the base, and embracing the stem. The flowers are in terminal, dense, corymbs of a bright yellow color, and flattish. The leaflets of the calyx are obtuse, with a dry scaly margin. The florets are numerous, those of the disc hermaphrodite and five-cleft, those of the margin female and trifid. The seeds are small, uniform, inversely pyramidal, pentagonal, ribbed, of an ash color, and crowned with a narrow marginate, membranaceous pappus.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

Tansy has a strong disagreeable, peculiar, fragrant odor, and a warm acid bitterish taste, somewhat resembling that of camphor. The leaves and flowers are used; they yield their peculiar qualities to water and alcohol, and in distillation with water they afford a greenish-yellow essential oil, which has in perfection the odor and taste of the plant. This oil (oleum tanaceti) is yellow, sometimes green, and its specific gravity is 0.952. The leaves and flowers contain also a peculiar acid which has been called tanacetic, volatile-oil, bitter resin, fatty oil, wax, &c. They have been analyzed by Fromherz, and by Peschier, and the constituents are as already mentioned. Their medical properties are owing to the oil and bitter resin. The tanacetic acid is crystallizable. It precipitates lyme, baryta, and oxide of lead. With a solution of acetate of copper it causes a precipitate.

Tansy produces the usual effects of the aromatic bitter tonics, which by continued administration in debilitated and relaxed conditions of the body, increase gradually the tenacity of the whole system, and thereby render the fibres more tense and
strong, and give better firmness and density to all the tissues and organs.

The leaves and flowers of Tansy are tonic, stomachic, and anthelmintic. They were formerly regarded as a powerful remedy in intermittent, dropsy, hysteria, and obstructed menstruation. There is a common belief that it acts specially on the uterus, and hence the oil has frequently been resorted to for the production of abortion, and several cases of death have ensued from the practice. A fatal case of poisoning with half an ounce of oil of tansy is recorded in the Medical Magazine for Nov. 1834. Frequent and violent clonic spasms were experienced, with much disturbance of respiration, and the action of the heart gradually became weaker till death took place from its entire suspension.—(U. S. Dis. from Am. Jour. of Med. Sciences, XVI. 256).

In medicine, the plant is rarely employed by the regular practitioner. Experience and the knowledge of better remedies have in a great measure set aside its use. An infusion of the whole herb in boiling water has been recommended as a preventative of the return of gout. It is also said that if fresh meat be rubbed with it, the flesh-fly will not injure it.

As a vermifuge the plant certainly possesses some pretensions, rather, however, as a preventative of the generation of worms, than as an agent for their removal when they have become a source of annoyance. In the investigation of the pathology of the existence of worms, various plausible abnormal conditions of the intestines have been invoked for evidence in favor of a theory which contemplates the cold slime or mucous accumulation of the intestines as the essential elements of their existence, and which supposes that without this nourishment the worms could not find means of subsistence, and that by consequence their being would be ephemeral, or at least very contingent. The prophylactic power of Tanacetum Vulgare against worms is therefore chiefly to be ascribed to its power of improving the physiological condition of the intestines, so as to change their secretions, and thus remove these parasites.

Tansy tea (prepared by infusing two ounces of the herb in one pint of boiling water), may be taken in doses of from one to three fluid ounces. A drop or two of the oil may be added to vermifuge powders and pills. The dose of the powder is from thirty grains to a drachm, two or three times a day. The seeds are most effectual as a vermifuge.
No. 84.

NICOTIANA TABACUM.

Tobacco, Virginia tobacco.
SOLANACEÆ.

Nightshades.

No. 84.

NICOTIANA TABACUM.

Tobacco, Virginia Tobacco.

Place—America.
Quality—Nauseous, poisonous.
Power—Anodyne, antispasmodic, narcotic, errhine.
Use—The leaf in wounds, scabies, tinea, cough; the smoke in constipation of the bowels; the syrup in asthma, colic, hysterics, dysentery, jaundice, dropsy.

BOTANICAL ANALYSIS.

Natural Order. Luridæ.—L. Solanaceæ.—J.

Class V. Pentandria. Order Monogynia.

Genus. NICOTIANA.

Named from John Nicot of Nismes, in Languedoc who introduced it into Europe.

Synonyms.—Le tabac (Fr.) Deziabak (Ger.) Tebak (Dutch.) Tobacco (L) Tabaco (Sp.) Petume (Brazil.) Tamaka (Indian.) Tabar (Russ., Pol., &c.)

THE ESSENTIAL CHARACTERS.

Calyx. Sepals, four—five, more or less united, mostly persistent.
Corolla. Regular. Limb four—five, cleft, plaited in aestivation, deciduous.
Stamens. four—five (sometimes one abortive), inserted on the corolla, alternate with its segments. Anthers bursting longitudinally, rarely by terminal pores.
NICOTIANA TOBACUM.

Ovary. Free, (superior), two-celled (four-celled in Datura) with the placenta in the axis. Styles and stigmas united.

Fruit. A capsule or berry.

THE SECONDARY CHARACTERS.

THE SPECIFIC CHARACTERS.

Leaves lance-ovate, sessile, decurrent. Flowers acute.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

The only plants cultivated as Tobacco are the species Nicotiana Tabacum and Nicotiana Rustica, the former greatly preferred. The popular narcotic which it furnishes is probably in more extensive use than any other, and its only rival is the Betel of the east. According to Linnaeus, Tobacco was known in Europe from 1560. It was brought to England from Tobajo in the West Indies, or Tobasco in Mexico (and hence the name) by Ralph Lane, in 1586, but only the herb for smoking. Afterwards, according to Hakluyt, seeds were introduced from the same quarter. Sir Walter Raleigh first introduced smoking, which has consequently been common in Europe for more than two hundred years. Tobacco as used by man, says Du Tour, gives pleasure to the savage and the philosopher, to the inhabitant of the burning desert and frozen zone. Its use either in
powder, to chew, or to smoke is universal, and for no other reason than a sort of convulsive motion (sneezing), produced by the first, and a degree of intoxication by the two last modes of usage. A hundred volumes have been written against it, of which a German has preserved the titles. Among these books is that of James Stuart, King of England, who violently opposed it as injurious to health, and absolutely poisonous. The royal author styles it "a custom loathsome to the eye, hateful to the nose, harmful to the brain, dangerous to the lungs, and in the black stinking fume thereof, nearest resembling the horrible Stygian smoke of the pit that is bottomless." Notwithstanding, however, such opposition, smoking together with the use of snuff, has spread not only through civilized, but among savage nations, and there is now probably no single product of the vegetable kingdom which is so extensively employed. All the sovereigns of Europe, and most of those of other parts of the world, derive a considerable part of their revenue from tobacco.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The recent leaves of Tobacco possess very little odor or taste, but when dried their odor is strong, narcotic, and somewhat fetid, their taste bitter and extremely acrid. When well cured, their color is yellowish green. They emit sparks in burning, and give out a suffocating smoke, and when distilled, yield an essential oil of a green color, on which their medicinal properties are supposed to depend, and which is said to be a virulent poison. This oil is dissipated by the long coction of tobacco with water; yet in distillation with ether, water or alcohol, no oil comes over. By infusion, however, it yields its active principles to all of these fluids. Its deflagration shows the presence of nitrate of potassa, and muriate of potassa has been discovered in its inspissated juice. According to Vanquelin, tobacco appears to contain albumen or gluten, supermalate of lime, acetic acid, nitrate and muriate of potassa, muriate of ammonia, a red matter, soluble in alcohol and water, a green fecula, and a peculiar substance, on which the properties of the plant appear to depend, and which has been therefore named nicotin. This substance is colorless, acrid, has the odor of tobacco, and like it occasions violent sneezing. It is volatile, poisonous, and produces colorless solutions with alcohol and water, from which it is thrown down by tincture of nutgalls.
NICOTIANA TABACUM.

Tobacco is narcotic, sedative, emetic, diuretic, cathartic, and errhine, whether it be taken into the stomach, or externally applied. The three first mentioned properties are sufficiently obvious, even from the effects which smoking or chewing it produces on persons unaccustomed to its use. From Mr. Brodie's experiments, the infusion of tobacco produces its effect in the heart through the medium of the nerves. The symptoms are very severe, sickness, headache, extreme debility, cold sweats, and sometimes even convulsions. The production of such a state of the habit, however, being useful for relieving violent spasmodic constriction, tobacco is advantageously employed in obstinate constipation, ileus, suppression of urine, and incarcerated hernia, when other remedies fail of affording relief. The smoke is either thrown into the rectum by means of a pair of bellows of peculiar construction, or an infusion of the leaves is exhibited in the form of enema. From its narcotic power also, the smoking or chewing tobacco has been found useful in allaying the pain of toothache; and smoking is sometimes found useful in shortening and rendering more supportable the paroxysm of spasmodic asthma. The infusion has been used as an emetic, but the practice cannot be recommended, and notwithstanding the success of some practitioners, who employ it in dropsy and dysuria, its general effects are too violent for internal exhibition, and it is not equal as a diuretic, either to squill or foxglove, which are more manageable remedies. In dysuria, however, its antispasmodic properties are of advantage, and consequently its use in that complaint is less objectionable. The external application of a strong infusion of tobacco, or of a cataplasm of the moistened leaves themselves is sometimes employed as a local stimulant in porrigo, scabies and some other cutaneous eruptions, but even in this mode of using it, tobacco is apt to induce the same effect as when internally administered.

Tobacco, as a sternutatory is the basis of all the kinds of snuff generally used. The powdered leaves snuffed up the nostrils, excite vehement sneezing, and promote a considerable discharge from the nostrils, answering all the purposes for which errhines are employed. As a luxury, snuff has been used for more than two hundred years in Britain, in great quantities. After the use of it has become habitual, it cannot be relinquished without considerable risk, arising from the suspension of the artificial discharge it produces, as Dr. Cullen observed from his own experience.
No 85
RHIZOM PALMATUM.
Rhubarb.
POLYGONACEÆ.

Buckwheats.

NO. 85

RHEUM PALMATUM.

Palmated Rhubarb, Rhubarb.

Place—Thrace, Scythia, Mongal, on the borders of China.

Quality—Styptic, bitter, nauseous.

Power—Purging, astringent, stomachic.

Use—The root in diarrhoea, leucorrhœa, debility of the stomach, hypochondriasis, and vermicule.

BOTANICAL ANALYSIS.

Natural Order. Oleraceæ.—L. Polygonaceæ.—J.

Class IX. Enneandria. Order Trigynia.

Genus. RHEUM.

This name was ingeniously supposed by Linæus to have been derived from ῥηια, to flow, because the root causes a discharge of bile. It nevertheless was formed from ῥια the ancient name of the Volga.

THE ESSENTIAL CHARACTERS.

Calyx. Sepals united at base, imbricate in aestivation.

Corolla. None.

Stamens. Definite, inserted on the calyx near the base.

Ovary. Free, with a single erect ovule. Styles or stigmas several.
RHEUM PALMATUM.

FRUIT. *Achenium*, usually triangular.
SEEDS. *Embryo* generally on one side of farinaeous albumen.

THE SECONDARY CHARACTERS.

Calyx none *Corol* six-cleft permanent. *Nut* one, three-sided.

THE SPECIFIC CHARACTERS.

Leaves palmate, acuminate.

THE ARTIFICIAL CHARACTERS.

CLASS ENNEANDRIA. *Stamens* nine. ORDER TRIGYNA. *Herbs* with alternate leaves and stipular sheaths. *Calyx* colored.

NATURAL HISTORY.

This species, *Rheum Palmatum*, is a native of Central Asia. It grows on the snowy mountains of Boutan and of Dauria, and arrives at considerable perfection when cultivated either in England or the United States. The plant is of easy culture by cuttings, or by seed. The soil best suited is one that is light, rich, deep, and moderately moist.

The root is perennial, thick, oval, branched, externally brown, and internally of a deep yellow color. The stem, which rises eight or ten feet in height, is erect, round, hollow, jointed, very slightly furrowed, and maculated with small oblong purple streaks, the lower leaves stand upon long smooth petioles, are numerous, large, divided into five segments, which are deeply sinuated, toothed, and strongly ribbed; the petiole being divided at its apex into the five midribs of the segments, of a deep green color, rough above, and pale and villous below; those of the stem spring from the joints, are also petiolate, and gradually lessen in size towards the top of the stem. There is a sheathing stipule, or *ochrea* at the base of each stem leaf. The flowers spring from the axilla of the base in numerous panicled clusters; they
RHEUM PALMATUM.

appear in May. The corolla is divided into six obtuse segments of a greenish white color, tinted with light pinkish purple. The filaments are nine, slender, the length of the corolla, and furnished with oblong double anthers. The style is short, with three reflected capitate stigmas. The germ is a triangular seed enclosed in a capsule with three membranous reddish margins or ake.

Most of the information that has been collected with respect to the cultivation, preparation, &c. of rhubarb is derived from the Buchanians, the family of Tartars who deal in the article, and no European has been enabled to verify it. The Russian variety grows naturally in the mountainous districts, either on the sides of the mountains, or on their summits in soils of different kind. It prefers, however, light and sandy loose earth. The most vigorous plants are those which grow in the shade. The Siberian variety, on the contrary, thrives best in the sun. The roots are collected twice annually in the spring and the autumn. The age of the root before being removed from the earth should be at least six years and sometimes even more. When taken up it is immediately cleansed, deprived of its bark, and dried under cover in the shade, but exposed to the air—this may be done artificially. The drying process is the most difficult, and at the same time, the most important in the preparation of rhubarb. There is a difference in the appearance of the two articles mentioned, which is owing to the preparation. The Russian is angulated by the removal of the exterior with a sharp instrument—it is simply perforated for inspection. The Chinese is in rounded masses, smooth from attrition, which is accomplished in a barrel and perforated to be suspended on cords to dry.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

Good Russian or Turkey rhubarb has a peculiar, somewhat aromatic odor, and a bitter slightly astringent, subacid taste, feels gritty between the teeth when chewed, and tinges the saliva of a bright yellow color. It breaks with a rough, hackly fracture, is easily pulverized, and affords a powder of a bright buff yellow color. It should not be porous but rather compact and heavy. Water at 212° takes up twenty-four parts in sixty, forming an infusion of a brown color, nearly clear, and reddening litmus paper. Alcohol extracts two seven tenths from ten parts, and gives a tincture of a rich golden color, which
RHEUM PALMATUM.

reddens tincture of litmus, is not altered in its transparency by the addition of water, and strikes a blackish olive hue with solution of sulphate of iron, but no immediate precipitate falls. Sulphuric ether takes up 1.5 in 10 parts of this rhubarb. The tincture is of a golden yellow hue, and when evaporated in water, leaves a thin pellicle of yellow resin and abundance of extractive dissolved in the water. combined however with tannin. According to the analysis of M. Henry, it contains a yellow coloring matter, a bland oil, secula, a small quantity of gum, tannin, lignine, oxalate of lime, supermalate of lime, sulphate of lime, a salt of potassa, and oxide of iron. East India or Chinese rhubarb has a strong odor, and is more nauseous to the taste than the Turkey, breaks with a more compact and smoother fracture, and affords a powder of a redder shade. Water takes up thirty parts in sixty, the infusion is not so deep colored as that of Russian rhubarb, is more turbid, and reddens also litmus paper. Alcohol extracts four parts in ten. The tincture is of a much deeper color, and brownish, and gives a deeper red to litmus tincture, is rendered slightly turbid by the addition of water, and strikes a green, not blackish olive with sulphate of iron, which it also quickly and copiously precipitates. Ether takes up two parts in ten, the tincture is deeper colored, and when evaporated on water, affords the same results except that the compound of tannin and extractive is more soluble.

Rhubarb is a mild purgative, and may be given to the youngest infants. Its operation is quickened by the addition of neutral salts and calomel, the purgative powers of which it also reciprocally augments, so that a compound, formed of small portions of rhubarb and a neutral salt or calomel, acts with more certainty and quicker than large doses of either separately taken. Rhubarb is particularly adapted for the majority of cases of diarrhoea, as it evacuates any aerid matter that may be offending the bowels, before it acts as an astringent.Externally it has been applied by friction to produce its purgative effects, and its powder is sometimes sprinkled over ulcers to assist their granulation and healing. It colors the urine in the space of twenty minutes after it is taken, and may be detected by the aid of an alkali. It disappears after an hour or two, but re-appears owing to a second absorption from the colon. Bradner Staart also affirms that it can be detected in the urine after using a bath impregnated with it. The Chinese use it medicinally, but chiefly to color a spirituous liquor.
No. 86

THEA CHINENSI S

Tea, The tea plant.
TERNSTROEMIACEÆ.

Teaworts.

No. 86.

THIA CHINENSIS.

Tea, The Tea Plant.

Place—Asia.

Quality—Styptic.

Power—Strengthening, drying, diuretic.

Use—The leaves in drowsiness, convulsions, calculus, obesity. Hurtful to weak stomachs.

BOTANICAL ANALYSIS.

Natural Order. Missellaneæ.—L. Ternstromiaceæ.—J.

Class XIII. Polyandria Order Monogynia.

Genus. THEA.

From the Greek "tea," originating in the Chinese Tcha or Tsja, their name for Tea.

Synonymes Thi (F.) Der, Thee [Ger.] The [It.]

The Essential Characters.

Calyx. Sepals, five or seven, concave, coriaceous, deciduous, the inner often the largest.

Corolla. Petals, Five—six, or nine, not equal in number to the sepals.

Stamens. Indefinite or numerous, hypogynous. Filaments, distinct or united into one or more setts.

Ovary. Superior, or with several cells. Styles three—seven more or less combined.

Fruit. Two—seven-celled, capsular.

Seeds. Large, few attached to the axis.
THIA CHINENSIS.

THE SECONDARY CHARACTERS.

Thea. Sepals, five-six rounded. Petals, six-nine sessile. Stamens, numerous. Capsule, three-celled, seven-valved, each cell containing one to two seeds, and opening at the upper part.

Calyx, five or six-leaved. Corol., six or nine petalled. Capsule, three-seeded.

THE SPECIFIC CHARACTERS.

Thea Chinensis. Leaves, alternate, smooth, ovate-oblong. Flowers, axillary, either single or aggregated on short glabrous peduncles.

Coroll, larger than the Calyx. Stamens numerous. Flowers, six-petalled. Leaves, oblong-oval, rugose.

THE ARTIFICIAL CHARACTERS.

Class Polyandria. Stamens twenty or more, arising from the receptacle (hypogynous.) Order Monogynia. Calyx imbricate in aestivation. Trees.

NATURAL HISTORY.

This genus derives its name from its Chinese appellation, and, in a commercial point of view, is one of the most important of the vegetable kingdom. But, notwithstanding this importance, and the numerous notices of it and its cultivation, no little uncertainty exists whether it contains one or more species, or in other words, whether the black and the green teas are the product of the same or of different species: many modern botanists, however, are of opinion that all are but varieties of one species, which is therefore named Thea Chinensis.

Notwithstanding the many different kinds of Tea exported from China, there is good reason to believe that they are all the produce of one species (as has already been hinted), and that the differences of quality are the result of variations in the character of the plant, which are induced by differences of soil, climate &c., in the extensive tract over which it is grown,—and of variations in the age of the trees, the time of gathering the leaves, and in the mode of preparing them. The tea districts o
THIA CHINENSIS.

China extend from about the 27th to the 33rd degree of north latitude, but the plant may be cultivated in regions more distant from the equator, if the climate be mild and equable. The plant is raised from seed, and the first crop of leaves is gathered in the third year. After the shrubs have attained the age of six or seven years, their produce becomes so inferior that they are removed to make room for a fresh succession. The leaves are gathered from one to four times during the year, according to the age of the tree. Most commonly there are three periods of gathering: the first commences about the middle of April, the second at midsummer, and the last in August. The leaves that are earliest gathered are of the most delicate color and most aromatic flavor, with the least portion of either fibre or bitterness. Leaves of the second gathering are of a dull green color, and have less valuable qualities than the former, whilst those which are last collected are of a dark green and of inferior value. The quality is further influenced by the age of the wood on which the leaves are borne, and by the degree of exposure to which they have been accustomed. Leaves from young wood, and those most exposed are always the best, as is readily understood on physiological principles. The leaves when gathered are partly dried by the air and sun, and partly by artificial heat, and are carefully rolled up by the hand. It is commonly believed that the distinctive character of green tea is imparted to it by being dried upon sheets of copper. For this belief, however, there is no foundation in fact, since copper is not used for the purpose, and the most careful application of chemical tests fails to discover any such impregnation.

The history of commerce does not furnish any parallel to the circumstances which have attended the introduction of Tea into Great Britain. The leaf was first imported by the Dutch East India Company, in the early part of the seventeenth century, but it does not appear to have found its way to England until about the year 1650. The first historical notice of it is in an Act of Parliament of the year 1660, in which it was enumerated as one of the beverages sold in coffee-houses, on which a duty was to be paid. That it was not then a common drink is evident from an entry in the private journal of Mr. Pepys, Secretary to the Admiralty, who says, 25th Sep. 1661: "I sent for a cup of tea (a China drink) of which I had never drunk before." In 1664 the British East India Company sent two pounds of tea as a present to the King. In 1667 the Company
imported 100 lbs. Since then the consumption has gone on regularly increasing. In 1734 the quantity imported was about 632,000 lbs., in 1768 it was nearly seven million pounds. In 1800 it was twenty millions, and during the last four years of the East India Company's charter, the average quantity imported was over thirty-one millions. Since the abolition of the monopoly, the consumption has increased more rapidly, the amount imported having nearly reached fifty million pounds.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

Volumes have been written for and against this article. Some authors attributing to it the most pernicious qualities, such as inducing nervous tremors, dyspepsia, dropsy, &c., whilst others again have been as lavish in its praise. That the use of tea may be abused, there can be no doubt; but it is equally certain that a moderate employment of it, and especially of the better kinds of black tea (which, it may be noticed, is the only kind used by the Chinese) far from being prejudicial, has a positive power in calming nervous irritation, and aiding the digestive functions, and giving, after fatigue, a new life and tone to the system. The green tea is very apt to affect the nervous system of those unaccustomed to its use, but at the same time it does not appear that its constant employment is attended with any ill effects.

Tea is often administered warm, to aid in the production of diaphoresis, but does not seem to have any greater power than any other mild infusion. From several analyses made of it, it is shown to consist of a bitter extractive, mucilage, resin, gallic acid, and tannin, and a peculiar principle called Theine, on which its properties depend. This substance, which is also found in coffee and chocolate, as well as in the Mate, is a highly azotized principle, and has probably a much greater influence on the system in aiding the assimilation of food than is generally supposed; and hence the great use made of the various plants containing it, by almost all nations.

The properties of tea are not of so decided a character as to render it capable of very extensive application as a medicine, and its almost exclusive use is as a grateful beverage at the evening and morning meals. As a medicine, however, tea may sometimes be given advantageously in diarrhea, and a strong infusion will often be found to relieve nervous headache.
No. 87.

Frasera Carolinensis.

American Columbo Indian lettuce, &c.
GENTIANACEÆ.

The Gentian Tribe.

No 87.

FRASERA CAROLINENSIS.

American Columbo, Indian Lettuce, &c.

Place—United States.

Quality—Bitter.

Power—(when fresh) Emetic, cathartic, (when dry) Tonic, antiseptic, febrifuge.

Use—Consumption, dyspepsia, jaundice, scurvy, &c.

BOTANICAL ANALYSIS.

Natural Order. Stellatae.—L. Gentianaceae.—J.

Class IV. Tetrandria. Order Monogynia.

Genus FRASERA.

In honor of John Fraser, an American cultivator of exotics, to whose exertions the gardens, particularly of London, are indebted for many rare American plants.

Synonymes.—Frasera Colombo, [F.] Colombo Wurzel [Ger.]

THE ESSENTIAL CHARACTERS.

Calyx. Sepals, four—five—ten, united at base, persistent.

Corolla. Usually regular. Limb divided into as many lobes as there are sepals, mostly twisted in aestivation.

Stamens. Issuing from the tube of the corolla, as many as its lobes, and alternate with them.

Ovary. One celled, sometimes rendered apparently two-celled by the introflexed placentae. Style, united into one, or wanting Stigmas one—two.

Fruit. Capsule many-seeded.

Seeds Small. Embryo straight, with fleshy albumen.
FRASERA CAROLINENSIS.

THE SECONDARY CHARACTERS.

Fraser. Flowers, mostly tetramerous. Petals united at base, oval, spreading, deciduous, each with one or two bearded or bicuspid glands in the middle. Style one. Stigmas two, distinct. Capsule compressed, one-celled. Seeds few, imbricate, large, elliptic, margined.

THE SPECIFIC CHARACTERS.

Leaves whorled, or opposite. Flowers in clusters.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

The American Columbo is found in great abundance in the rich glades of the Western States, where it grows most luxuriantly, sometimes attaining the height of ten feet. It is one of the tallest and handsomest of our native herbaceous plants, having a large pyramid of crowded flowers, sometimes three or four feet in length. It is a true triennial, the stalk and flowers not shooting up till the third year. There is, however, some difference of opinion as to its duration, Rafinesque stating that it is strictly a triennial, whilst other botanists agree in considering it to be a biennial. It was first discovered by Wm. Bartram, who speaks of it in his travels under the name of Indian lettuce. The habitation of this plant is variously described by different botanists. Michaux has observed it in wet or swampy places, in "Paludosis Carolinae." Pursh says it is found "in the swamps of Lower Carolina, and on the borders of the lakes of Pennsyl-
FRASERA CAROLINENSIS.

venia and New York.” Mr. Nutall says, “in the dry and open woods of Pennsylvania and New York, in certain localities, it is abundant.” Dr. Wm. Short says, “it grows in the barrens or prairies of Kentucky.” The late Dr. Barton observed it growing in great abundance on the west side of the Genesee river in the State of New York. It is said to be common in some parts of Upper Canada, but the States of Kentucky and Tennessee yield it in profusion. From the abundance which grows in the neighborhood of Marietta, in Ohio, it is sometimes called Marietta Colombo. According to Walter, Michaux, Mr. Wm. Bartram, and Mr. Elliott, it grows in Carolina and Georgia. The latter gentleman mentions that it has been found in Fairfield district and in Abbeville.

The root is large, yellow, tuberose, hard, horizontal, spindle-shaped, sometimes two feet long, with few fibres. The whole plant is perfectly smooth. The stem from five to ten feet high, round, erect, solid, with few branches except at the top, where they form a pyramid of flowers. Leaves in whorls; the radical or root leaves form a star spread upon the ground, from five to twelve in number, from ten to eighteen inches long, and from three to five broad, constituting the whole plant in the first two years, or before the stem grows. The stem leaves are whorls, from four to eight, smaller than the radical leaves. Flowers yellowish white, numerous, forming a large pyramidal panicle, peduncles leafy or bracteate. Calyx deeply four cleft, spreading, segments lanceolate, acute, persistent, nearly as long as the corolla. Corolla with four elliptic segments flat and spreading, margin somewhat inrolled, a fimbriated pit in the centre of each. Stamens four, alternate, with the segments, filaments short, subulate, anthers oval, oblong. Ovary compressed, bearing a short style with two short stigmas. Capsule yellowish, oval, acuminate, compressed, margin thin, two-valved, one-seeded. Seeds flat, elliptical winged. The seeds grow in pods, shaped like a horse-bean, and are much like parsnip seeds.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The American Colombo has been thought to resemble the foreign article, both in medical properties as well as in appearance, but experience has not confirmed the high estimate which was at one time formed of its virtues, and though perhaps it is still much employed both in regular and domestic practice in
some parts of the country by several eminent practitioners, yet it has failed entirely to supplant the tonic of Mozambique.

The part that is officinal are the roots, and these in a fresh state often weigh several pounds. As found in the shops, they are in slices, somewhat resembling those of the Colombo, having a thick yellow bark, and a yellowish spongy meditullium. The taste is pure bitter, without any aroma. They may be distinguished from Colombo by their lighter color, and by affording a dark green precipitate with the salts of iron. A chemical examination has been made of this root by Mr. Douglass (Am. Jour. Pharm. vi. 177), and it was found to contain bitter extractive gum, tannin, gallic acid, resin, a fatty matter, sugar, &c, &c. Water and diluted alcohol extract its virtues, and the tincture throws down a precipitate upon the addition of water, but is not disturbed by tincture of galls, thus affording additional means of distinguishing the root from Colombo.

Colombo Root is emetic and cathartic when fresh, tonic, antiseptic and febrifuge when dry. It has a sweetish bitter taste like gentian. The leaves are also bitter. It yields its bitterness to water, but proof spirits is its proper menstruum. It may be given in powder or infusion. The dose of the former is from thirty grains to a drachm, that of an infusion made in the proportion of an ounce of the bruised roots to a pint of boiling water, is one or two fluid ounces, to be repeated several times a day. The root should be collected from the fall of the second year to the spring of the third year of its growth.

The root is used with considerable success in diseases of the stomach and debility. It avails in intermittents, like other pure bitters, and is extensively used in the Western States in fevers, colics, griping, nausea, relaxed stomach and bowels, indigestion, &c. As a purgative it is substituted for rhubarb in many cases, particularly for children and women enceinte. Cold water is said to add to its efficacy and prevent nausea, and vomiting. A teaspoonful of the powder in hot water and sugar will give immediate relief in case of heavy loading a weak stomach. It is a good corrector of the bile, alone or united with other bitters.

The Colombo leaves occasion sweat copiously when laid on the forehead, and will commonly relieve headache. This will also apply to any kind of inflammation, rheumatism, &c. Such is the efficacy of this root, says Peter Smith, that when they who take it recover, they are indeed well and need no other medicine.
No. 88.
CEANOThUS AMERICAnUS.
Jersey-tea, red-root.
RHAMNACEÆ.

Buckthorns.

No. 88.

CEANOTHUS AMERICANUS.

Jersey tea, Red-root.

Place—United States.

Quality—Diuretic.

Power—Purifying, purgative.

Use—Dysentery, syphilitic complaints.

BOTANICAL ANALYSIS.

Natural Order. Dumocæ.—L. Rhamnaceæ.—J.

Class V. Pentandria. Order Monogynia.

Genus. CEANOTHUS.

Keranothos is a name used by Theophratus to designate a prickly plant, from κέρας, to prick, because it pricks at the extreme parts.

Synonymes.

THE ESSENTIAL CHARACTERS.

Calyx. Sepals four or five, united at base, valvate in aestivation.

Corolla. Petals four or five distinct, cucullate or convolute, inserted into the orifice of the calyx. Sometimes wanting or none.

Stamens. Opposite the petals, four or five.

Ovary. Superior, or half superior, with an erect ovale in each cell.

Fruit. A capsule, drupe or berry.

CEANOTHUS AMERICANUS.

THE SECONDARY CHARACTERS.

CEANOTHUS. Calyx tubular, campanulate, five-cleft, separating transversely after flowering. Petals five, saccate-arched, with long claws. Stamens, mostly exerted. Style, mostly three-cleft. Capsule obtusely triangular, three-celled, three-seeded, surrounded at base by the persistent tube of the calyx.

Petals scale-like, vaulted. Claws long standing in the five-cleft, cup-form, calyx. Stigmas three. Berry or capsule dry, three-grained, three-celled, three-seeded, three-parted, opening on the inner side.

THE SPECIFIC CHARACTERS.

CEANOTHUS Americanus. Leaves oblong-ovate, serrate, three veined. Panicles axillary, elongated.

Leaves ovate, acuminate, serrate, three-nerved, pubescent beneath. Panicles axillary, long-peduncled, sub-corymbed.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

This almost American genus consists of shrubs or shrubby plants. The roots of the whole of them are large, reddish, and astringent. The leaves are alternate, usually ovate or elliptical, serrate or entire, persistent or deciduous. The flowers are white, blue, or yellowish in umbellike fascicls, which are aggregated at the extremity of the branches. There are several varieties, differing principally in the form of the leaves. It is probable that the medical properties of all the species are very much the same, though one only has attracted attention. The New Jersey tea is found in all parts of the United States, in copses and dry-woods, and very abundant on the barrens at the west. The plant flowers from June until September, is of very easy culture, and of very little beauty.

The root of the Ceanothus Americanus is large and dark red. The stem is shrubby, suffrutiucose, from two to four feet high, slender, with many round, smooth branches, the younger of which are pubescent. The leaves are three-nerved, rounded, or
CEANOTHUS AMERICANUS.

A little cordate at base, ovate or oblong-ovate, somewhat acuminate at the apex, serrate, nearly smooth above, and whitish, tomentose beneath, the pubescence of the veins and petioles somewhat reddish, they are thrice as long as broad, very downy, with soft hairs beneath. Flowers minute, in crowded panicles from the axils of the upper leaves. The calyx is white, five-cleft, and the upper portion separates by a transverse line, leaving the tube adhering to the fruit. The corolla is formed of five saccate, arched petals, which are longer than the calyx, and with filiform claws at base. The ovary is three-angled, and surrounded with a ten-toothed disk. The styles are three, united to the middle, but diverging above. The fruit is dry and coriaceous, obtusely triangular, three-celled and three-seeded. The seeds are convex externally, and concave within, the cavity marked with a longitudinal line.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The Ceanothus Americanus is a well-known plant and is considerably celebrated for having been much used during the Revolutionary war of the United States, as a substitute for the Chinese tea, whence its common name. The leaves when dried have an odor very much resembling that of the black tea of commerce, and are said to form an excellent substitute for it.

The leaves of the Jersey tea plant are slightly bitter, and somewhat astringent. The root is much more active, and was very highly esteemed among the Indians who used it as an astringent and febrifuge. It was afterwards very much employed also as a remedy in gonorrhcea, and even syphilis. In the first of these complaints, it is stated by Ferrien that a cure is effected in two or three days, and in the latter, even inveterate cases yield to it in fifteen. It is given in the form of decoction made in the proportion of two drachms of the root to a pint of water. Adamson also observes that he has employed it in these diseases with considerable success. These statements receive confirmation, in part at least, from the success that has attended this method of cure in private and domestic practice, as well as by several physicians and practitioners of the country.

In a communication to the Boston Medical and Surgical Journal (Sept., 1835), Dr. Hubbard speaks in very high terms
CEANOThUS AMERICANUS.

of a decoction of the leaves as a wash and gargle in the aphthoe of children, and in those cases of sore mouth subsequent to fever, and states that he was successful with it even where all other means had failed. He also found it very beneficial in those cases of ulceration of the fauces attendant on scurlatina, in these he used it in combination with Mayweed, Marula cotula, and borax. He further adds that as an astringent in dysentery, he found it fully as efficacious as the Hardack, spirea tomentosa. It may be used in diarrhoea, cholera infantum, and other complaints in which astringents are indicated.

With this testimony in its favor, Ceanothus Americanus certainly deserves a more extended trial, and should it be found to merit, even in part, what has been said of it, it will rank as an important article of our native Materia Medica.

It may be proper to mention that the Ceanothus caruleus is considered as a powerful febrifuge in Mexico, and that the Ceanothus decolor is employed in dysentery in Senegal.

Men of observation and science ought to be employed to explore the country with a view to its geology, mineralogy, botany, zoology, and agriculture. They ought not only to examine with their own eyes, but to avail themselves of local information to be derived from intelligent men in every part of the State. By these means a mass of valuable and authentic information may be obtained which can in most cases be acquired in no other way.

The celebrated Linneus often expressed a wish to visit America, in order to explore its vegetable productions. His disciple, Kalm, travelled through this country in 1743 for that purpose. Since the revolutionary war several European princes have sent scientific men here to make collections and observations on our natural history. In fact, several of the most valuable and interesting observations we possess, were made by them, who devoted themselves almost exclusively to this special object—the unfolding the bright volume of Creation, the pages of which are daily and hourly exhibited, "written," to use the impressive words of Lord Bacon, "in the only language which hath gone forth to the ends of the world, unaffected by the confusion of Babel."

It may be safely affirmed that Botany is capable of affording more to interest and instruct, more to refresh and relax the well-disposed mind, than any other pursuit. It is therefore important to encourage and promote this pleasure.
No. 89.

Drimys Winteri.

Winter’s Bark.
MAGNOLIACEÆ.
Magnoliads.

No. 89.

DRIMYS WINTERI.

Winter’s Bark.

Place—South America.
Quality—Aromatic.
Power—Stimulant, tonic.
Use—Scurvy, and as a condiment.

BOTANICAL ANALYSIS.

Natural Order. Winteraceæ.—L. Magnoliaceæ.—J.

Class XIII. Polyandria Order Polygynia.

Genus. DRIMYS.

From the Greek Δρίμυς, on account of its hot and pungent flavor.
Synonymes.—Cannelles de Winter (F), Winterana (J), Cortiza Winterana (S)

The Essential Characters.

Calyx. Sepals, three—six, deciduous, colored like the petals.
Corolla. Petals, six—twelve, hypogynous, in several rows, imbricate in aestivation.
Stamens. Indefinite hypogynous, distinct, with short filaments, and adnate anthers.
Ovary. Several, in many rows upon an elongated torus.
Fruit. Follicular or baccate, one—two seeded.
Seeds. Attached to the inner suture of the carpels, from which (in Magnolia) they are suspended by a long, delicate funiculus.
DRIMYS WINTERI.

THE SECONDARY CHARACTERS.

THE SPECIFIC CHARACTERS.

Drimys Winteri. Leaves, alternate, obtuse, oblong, glaucous beneath. Peduncles simple, approximated or very short, divided into elongated pedicels.

Leaves alternate, petiolate, oblong, obtuse, entire, smooth. Flowers small, solitary, or in clusters of from three to four. Bark of the trunk gray, that of the branches green.

THE ARTIFICIAL CHARACTERS.

Class Polyandria. Stamens twenty or more, arising from the receptacle (hypogynous.) Order Polygynia. Leaves never petalate. Trees with large showy flowers.

NATURAL HISTORY.

Winter's Bark was brought before the medical profession in a paper read to the Medical Society of London, in 1779, by the facetious John Fothergill, M. D. In this paper is published a history of the discovery of the tree, with a botanical account of it, drawn up by the celebrated Dr. Solander. It appears that the tree and the bark were unknown until the return of Captain John Winter from a voyage to the South Seas, in 1579. Captain Winter was the commander of the ship Elizabeth, which sailed with Sir Francis Drake in 1577, but after having passed through the Straits of Magellan, on the 8th of October of the following year, was obliged by stress of weather to return to the Straits, and remaining there some time, procured the bark, which Clusius, in honor of him, named Cortex Winteranus.

Other navigators, upon visiting the Straits, noticed the tree, but nothing definite was known of its botany until in 1691, Mr.
George Handasyd, upon his return, presented some specimens to Sir Hans Sloane, who gave a description and figure in the Philosophical Transactions. But it appears that the flowers and fruit were wanting, and a systematic location was impossible, until in 1768, Captain Wallis, of the Dolphin, brought some perfect specimens, which came into the hands of Dr. Solander, who, from these, and his own observations drew up his description.

"Drimys Winteri is one of the largest forest trees upon Terra del Fuego; it often rises to the height of fifty feet. The branches do not spread horizontally, but bend upwards, and form an elegant head of an oval shape. The leaves come out without order, of an oval, elliptic shape, quite entire, obtuse, flat, smooth, shining, of a thick, leathery substance, evergreen; on the upper side, of a lively deep green color, and of a pale bluish color underneath, without any nerves, and their veins scarcely visible; they are sometimes narrower near the footstalks, and there their margins are bent downwards. In general the leaves are from three to four inches long, and between one and two broad; they have very short footstalks, seldom half an inch long, which are smooth, concave on the upper side, and convex underneath. From the sears of the old footstalks, the branches are often tuberculated. The peduncles, or footstalks for the flowers, come out of the axilla foliorum, near the extremity of the branches; they are flat, of a pale color, twice or three times shorter than the leaves, now and then support only one flower, but are oftener near the top divided into three short branches, each with one flower. The bracteae are oblong, pointed, concave, entire, thick whitish, and situated at the base of each peduncle. Calyx it has none, but in its place the flower is surrounded with a spathaceous germ of a thick leathery substance, green, but reddish on the side which has faced the sun; before this germ bursts, it is of a round form, and its size is that of a small pea. It bursts commonly so that one side is higher than the other, and the segments are pointed. The corolla consists always of seven petals, which are obtuse, oval, concave, erect, white, have small veins, and are of an unequal size, the largest scarcely four lines long; they very soon fade, and drop off almost as soon as the germ bursts. The filaments are from fifteen to thirty, and are placed on the flat end side of the receptacle; they are much shorter than the petals, and gradually decrease in length towards the sides. The anthera are large, oval, longitudinally divided into two, or as if each was made up of two oblong antheras. The
The bark of the \textit{Drimys Winteri} attracted the attention of navigators, from its warm, spicy, aromatic properties; and in the treatment of scrobutic disease, which broke out in vessels going into the Straits of Magellan, was a very valuable auxiliary. It is rarely brought into the market as a drug, and has become very scarce in commerce. It is sometimes confounded with \textit{Canela Alba}, from which it differs in color, as it is pale yellowish, or dull reddish-gray, with elliptical dull brown spots externally, and brown internally. It has an aromatic odor and a warm bitterish taste. Winter's Bark was found by M. Henry to contain resin, volatile oil, coloring matter, tannic acid, several salts of potassa, malate of lime, and oxide of iron. The presence of tannic acid and oxide of iron serves to distinguish it essentially from the \textit{Canela Alba}, as these chemical evidences are present in one case and not in the other.

\textit{Drimys Winteri} is stimulant, aromatic, and tonic, and may be employed in all cases in which the \textit{Canela} and \textit{Cinnamon} are indicated. It was much praised by the discoverer as an anti-scrobutic. Ferrein states that the natives of Terra del Fuego employ it to prevent a cutaneous disease to which they are subject, from eating seals' flesh.

Some confusion is apparent among the authors who have treated upon the tree, with respect to its name; hence the different appellations by which it has been described. The term \textit{Winterana Aromatica} was bestowed by Linnaeus, in commemoration of its discoverer; in so doing, however, he mistook it for the \textit{Canela Alba}, and gave the account of the fructification of that plant. Browne, however, had stamped that genus with the name of \textit{Canela}. Foster having obtained the parts of fructification, gave to the plant the name of \textit{Drimys Winteri}, from its hot and pungent flavor. Murray, in his \textit{Linn. Syst. Veg.} gave the generic name \textit{Wintera}, which he preferred to the original Linnean one, and finally De Candolle has adopted the name of Foster, in imitation of Lamarck. The species which Lamarck calls Drimys Punctata is a variety only.
No 90.

Solanum Tuberosum.

Common Potato.
SOLANACEÆ.

Nightshades.

No 90.

SOLANUM TUBEROSUM.

Common Potato.

Place—South America.
Quality—Viscous.
Power—Anti-spasmodic, slightly narcotic.
Use—Chronic rheumatism, scurvy, &c.

BOTANICAL ANALYSIS.

Natural Order. Luridæ.—L. Solanaceæ.—J.

CLASS V. Pentandria. Order Monogynia:

Genus SOLANUM.

Etymology uncertain. Some derive it from Lat. Sol, sun, and Greek ἄνθις, (without having reference to the nightshade species. (Others from Lat. Solari, to comfort; though the application is not evident.

Synonymes.—Pomme de terre [F.], Die Kartoffeln [Ger.], Aardappelen [Dutch], Tertubianci [It.], Batatas Inglezas [Sp.], Batata de terra [Port.]

THE ESSENTIAL CHARACTERS.

CALYX. Sepals, four—five, more or less united, mostly persistent.

COROLLA. Regular. Limb four—five cleft, plaited in aestivation, deciduous.

STAMENS. Four—five (sometimes one abortive), inserted on the corolla, alternate with its segments. Anthers broad, longitudinally, rarely by terminal pores.

OVARY. Free (superior) two-celled, (four-celled in the placenta in the axis. Styles and Stig into one.
SOLANUM TUBEROSEUM.

for arrow-root, and is also so manufactured as to resemble and be sold for sago. The tissue of potatoes is cellular,—each cell contains from ten to twelve grains of starch. Both in the cells and in the intercellular spaces is an albuminous liquid. By boiling the cells are separated, the starch-grains absorb the albuminous liquid, swell up, and completely fill the cells, while the albumen coagulates and forms irregular fibres, which are placed between the starch-grains. Potatoes in which these changes are complete, are called meally, while those in which the liquid is only partially absorbed, and the coagulations imperfectly effected, are denominated doughy, or watery.

Potatoes have been repeatedly subjected to chemical examination; their principal constituents are starch, starchy fibrin, albumen, gum, acids, salts, and water. The relative proportions vary with the season, the varieties of the potatoe, &c. Potato-starch consists of particles of varied shapes, and sizes—the normal form is probably ovate. Their size varies from one six-hundredth to one thirtieth of a line in diameter. They are characterized by concentric rings, observed on their surface, and which Fritzche regards as indications of concentric layers, of which he asserts these grains to be composed. The hilum is circular. The cracks observed on some of the larger grains proceed usually from the hilum.

Sugar is sometimes manufactured from potatoes. By fermentation potatoes yield a vinous liquid (potato-wine) of good quality. By distillation this yields potato-spirit, from which a volatile oil (oil of potatoes) has been extracted. An extract obtained from the stalks and leaves of potatoes is said to possess narcotic properties, in doses of two or three grains, but the cases are not perfectly satisfactory.

The tubers of potatoes when boiled are a most valuable article of food, both for men and animals. Those of good quality are not only perfectly innocuous but highly nutritious, and easy of digestion. In the raw state they have been found less nutritious for animals, while on man they are said to prove laxative and diuretic, and to excite slightly the nervous system. The process of cooking is probably useful in two ways, by rendering the starch digestible, and secondly by extracting some noxious matter. The potato in a raw state, eaten as a salad with vinegar, has proved of much benefit on ship-board as a preventative of scurvy. An extract of the leaves is recommended in chronic rheumatism, and pains of the stomach and bowels.
No. 91

Celandine

Common Celandine, pilewort, letterwort.
PAPAVERACEÆ.

Poppyworts.

No 91.

CHELIDONIUM MAJUS.

Celandine, Pilewort, Tetterwort, etc.

Place—Europe.

Quality—Bitter, acrid, caustic.

Power—Diuretic, diaphoretic.

Use—Jaundice, dropsy, herpes, etc.

BOTANICAL ANALYSIS.

Natural Order. *Rhoeadae.*—L. *Papaveraceae.*—J.

Class XIII. Polyandria. Order Monogynia.

Genus CHELIDONIUM.

From the Greek χελίδον, the swallow, the plant being supposed to flower with the arrival of that bird, and to perish with its departure. The English word *Celandine* appears to be a corruption of *Chelidonium*.

Synonyms.—La chelidoine [*Fr.*], Das scholkrant [*Ger.*], Schelkruid [*Dutch*], *Celandonia* [*It.*], *Celidonia* [*Sp.*], *Svaleurt* [*Dan.*]

The essential characters.

Calyx. *Sepals,* two, rarely three, deciduous, imbricated in aestivation.

Corolla. *Petals,* four, rarely five or six hypogynous.
CHELIDONIUM MAJUS.

Stamens often indefinite or numerous, but some multiple of four, rarely polyadelpous. Anthers, innate. Ovary, solitary. Style, short or wanting. Stigmas, two, or if more, stellate upon the flat apex of ovary. Fruit, either pod-shaped, with two parietal placentae, or capsular with several. Seeds, indefinite or numerous, minute. Embryo, minute at the base of oily albumen.

THE SECONDARY CHARACTERS.

THE SPECIFIC CHARACTERS.

Umbels axillary, peduncled. Leaves alternate, pinnate, lobed.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

Chelidonium is a genus of perennial herbs, furnished with a yellowish acrid juice, and containing probably but a single species, which is a native of Europe, but has become extensively naturalized in the United States and elsewhere. Common Celandine is a pale green, and fleshy perennial herbaceous plant, growing in meadows and waste places, by running brooks, and on wet lands, flowering throughout the
summer. It rises to the height of from one to two feet—has many tender, round, green, watery stalks, with large joints, very brittle and transparent. Leaves smooth, glaucous, spreading, consisting of two—four pairs of leaflets, with an odd one. Leaflets irregularly dentate and lobed, the partial stalks winged at base. Umbels thin, axillary, pedunculate. Petals elliptical, entire yellow, and very fugacious, like every other part of the flower. The flowers are succeeded by pods, which, when fully ripe, burst suddenly, or, if compressed by the fingers, they will instantly fly to pieces, and scatter the seed; hence, Celandine is sometimes also called Touch-me-not.

The plant is of remarkable easy culture.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The whole plant, Chelidonium Majus, is very brittle, and exudes, when broken, an orange colored foetid juice. Its taste is intensely bitter and acrid, occasioning a sense of burning in the mouth and fauces, which lasts for some time. If applied to the skin, the juice produces inflammation, and even vesication. The whole plant is used; the root is more powerful than the stem, and is the part most generally approved. The active principle is soluble both in water and alcohol, and although not volatile, is somewhat diminished by drying. According to an analysis by M. M. Chevallier and Lassaigne (Jour. de Pharm., III. 451), the plant afforded a bitter resinous substance of a deep yellow color—a kind of gum-resin of an orange color, and bitter, nauseous taste, mucilage, albumen, and various saline substances, besides free malic acid and silica. Dr. Probst, of Heidelberg, has more recently found in it a peculiar acid, denominated Cheledonic acid; two alkaline principles, one of which forms neutral salts with the acids, and is called Chelerythrin, in consequence of the intense redness of its salts; the other unites with, but does not neutralize the acids, and is named Chelidonin; and lastly, a neutral, crystallizable, bitter principle, which, from its yellow color, is called Chilidoxanthin. Of these principles, chelerythrin appears to rank among the acrid narcotic poisons (Annal. der Pharm. XXIX. 113).

Celandine is an acrid purgative, possessed also of diuretic, diaphoretic, and expectorant properties. In over doses it produces unpleasant effects, and is by some considered poisonous
CHELIDONIUM MAJUS.

By the ancients, it enjoyed a very high reputation, and was thought to be particularly efficacious in the removal of obstructions of the liver, in promoting expectoration, and in the cure of chronic cutaneous affections. Miller (Compend. Herb.), says, it is operative and cleansing, opening obstructions of the liver and spleen, and of great use in curing the jaundice and scurvy. Outwardly it is used for sore eyes, to dry up rheum, and to take away specks and films, and also against titters and ringworms, and scurvy breakings out. It may not be as effectual in the treatment of these various affections as is stated, but is certainly possessed of much activity, and has been unduly neglected. "There is no doubt," says Withering, "but a medicine of such activity will one day be converted to more important purposes."

According to the observations of numerous German practitioners, its beneficial results in scrofula are unequivocal. Wendt and Kuntzmann have given cases where it proved completely successful in this disease (Jour. Huftand, 1813). As a drastic and hydragogue purgative it appears fully equal to gamboge, and might replace it in all cases in which the foreign article is used. It has also been recommended as an external application to the feet in those edematous swellings succeeding fevers. Recamier is of opinion that it has a peculiar elective action on the spleen, and hence, is very effectual in removing engorgements of that viscus.

Externally the juice has long been known as a caustic for the removal of warts and corns, which it destroys by stimulating them beyond their vital powers. The juice is also said to be very efficacious in stimulating and healing old and indolent ulcers, speedily removing fungous flesh, and giving a healthy action to the torpid and indolent granulations. Hildanus, Ethnulier, Geoffroy, and others, attest the powers of the juice, when diluted with some bland liquid in specks and opacities of the cornea. A cataplasm of the bruised leaves has also been successfully used in herpes and obstinate psora. The dose of the dried root or herb, is from thirty grains to a drachm, that of the fresh root one or two drachms, and the same quantity may be given in infusion. The watery extract, and the expressed juice, have also been employed. The dose of the former is from five to ten grains—that of the latter from ten to twenty drops. In each case the dose is to be gradually increased until the effects of the remedy are experienced.
No. 92.

COLCHICUM AUTUMNALE.

Meadon saffron, naked lady.
MELANTHACEÆ.

Melanthæs.

No. 92.

COLCHICUM AUTUMNALE.

Meadow Saffron—Naked Lady.

Place—Europe.

Quality—Strong smelling, acrid.

Power—Narcotic, diuretic, purgative.

Use—Dropsy, gout, piles, rheumatism.

BOTANICAL ANALYSIS.

Natural Order. Spathaceæ.—L. Melanthaceæ.—J.

Class VI. Hexandria. Order. Trigynia.

Genus. COLCHICUM.

From Colchis, says Dioscorides, where this plant grows in abundance.

Synonymes.—Colchique d'automne [F], Die zeitlose [Ger.], Wildi saffraan [D], Colchico [It.], Villoria [Sp.], Colchico [Port.], Beswremennoi zwiet [Russ.], Roszsiad [Pol.]

The Essential Characters.

Perianth regular, in two series, each of three segments, which are distinct or united at base, generally involute in aestivation.

Stamens six, with extrorse anthers.
COLCHICUM AUTUMNALE.

Ovary, three-celled, nine-many-ovuled. Styles distinct, or wanting. Stigmas undivided.

Fruit. Capsule or Berry, three-celled, generally with septicidal dehiscence.

Seeds, with a membranous testa, and dense fleshy albumen.

THE SECONDARY CHARACTERS.

Spathe. Corolla six-parted, with a rooted tube. Capsules three, connected, inflated.

THE SPECIFIC CHARACTERS.

Leaves plane, broadly lanceolate, erect. Fruit oblong, elliptical. Seeds small, sperical, internally white.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

Meadow-saffron is a native of the temperate parts of Europe, generally found growing in moist, rich meadow-grounds, and flowering in September. The fruit appears in the following spring or summer.

The cormus, commonly called the bulb or root, is solid, egg-shaped, and covered with a brown membranous coat. The leaves which appear in spring, are radical and spear-shaped, about five inches long and half an inch broad at the base. They wither away entirely before the end of summer, and are
COLCHICUM AUTUMNALE.

nevertheless preceded by the flower, which appears in autumn without any leaves; and from this circumstance the plant is sometimes called "Naked Lady." It is, however, proper to state, that the bulb from which the flowers spring, is the offset of that from which the leaves have decayed. There is no calyx. The corolla, which is of a pale, pinkish lilac color, springs directly from the bulb, and consists of a tube about five inches long, two thirds of which are sunk in the ground, and a limb divided into six lanceolate keeled segments. The filaments are half the length of the segments of the corolla, subulate, united to the upper part of the tube, and supporting yellow erect anthers. The stigmas are revolute. The fruit is a three-lobed, three-celled capsule, on a thick short peduncle. The impregnated germin remains under ground, close to the bulb, till the following spring, when it rises in its capsular form above the surface, accompanied by the leaves. The seeds are ripe about the end of June.

The thick old bulb begins to decay after the flower is perfectly expanded; and the new bulbs, of which there are always two formed on each old bulb, are perfected in the following June, from which time until the middle of August they may be taken up for medicinal use. The bulbs, when mature, on being cut transversely, yield a milky-looking acrid juice, which produces a beautiful cerulean blue color, if rubbed with the alcoholic solution of guaiacum.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The recent bulb of this plant has scarcely any odor. When it is dug up at a proper season of the year, the taste is bitter, hot, and acrid, occasioning a warm sensation in the stomach, even when taken in a small quantity. At other seasons, however, and in some soils and situations, it possesses very little acrimony, and thence the contradictory opinions which authors have given of it. Its acrimony resides in a peculiar alkali, which can be separated from the other principles, and has been named veratrine (veratria) by M. M. Pelletier and Caventou, who discovered it. The veratrine is obtained in form of a white powder; little soluble in water, but very soluble in alcohol; it combines with acids, but the neutral salts are not crystallizable. The other component parts of the bulb are the following: a fatty matter, malic acid, a yellow coloring matter,
gum, starch, inulin in great abundance, and lignin. Vinegar and wine are the best menstrua for extracting the active qualities of the bulb. A deposit forms in the wine, which is extremely acrid, exciting nausea and griping, and ought to be removed, as its removal does not alter the virtues of the medicine. The seeds contain veratria, and yield it up to wine, vinegar, and alcohol.

Colchicum Autumnale possesses diuretic, purgative, and narcotic properties. It is the *hermodactylion* of the ancients. In Europe, where it was recommended to notice by Baron Stoerck, it is a favorite remedy in dropsy, particularly hydrothorax, and in humoral asthma. But as it does not differ in its mode of action from squill, and is more uncertain in its operation, it has not been much used in that complaint in this country. In gout and rheumatism, however, its efficacy has been fully ascertained, and in allaying the pain it may be almost said to possess a specific property. It operates on the bowels chiefly, stimulating the orifice of the common gall duct in duodenum, so as to produce copious bilious evacuations; and acting on the nerves, it diminishes the action of the arterial system. The petals of the flower and the seed, possess the same medicinal properties as the bulb. In the seed the veratria exists in the testa or husk, and, consequently, the seeds should not be bruised in preparing the wine or tincture with them.

The dose, in substance, is from two to eight grains, which may be repeated every four or six hours, till the effects of the medicine are obtained. The medicine, however, is generally given in the state of vinous tincture.

To effectually preserve the virtues of the plant, **Meadow-saffron**, the bulb, as soon as possible after it is dug up, should be cut into transverse slices on clean white paper, distinct from one another, without heat, or at a very low temperature. The test of the drug being good and properly dried, is the appearance of the blue color on rubbing it with a little distilled vinegar, and the alcoholic solution of guaiacum. The slices also should not appear deeply notched or panduriform, as this is the mark of the bulb having begun to empty itself for the nourishment of the young bulbs, and, consequently, to suffer in its medicinal powers from the chemical change which, at this period, its contents must necessarily undergo for the nourishment of the offsets. It should be preserved in slices in well-stopped bottles.
No 93.

ISSAMPELOOS PAVEIIVA.

Velvet leaf, lée vine.
MENISPERMACEÆ.

Menispermads.

No. 93.

CISSAMPELOS PARIERA.

Pareira Brava—Velvet Leaf, Ice Vine.

Place—South America.

Quality—A sweet bitter.

Power—Diuretic, demulcent, purifying.

Use—Calculus, difficulty of passing water, arthritis, gout, dropsy, jaundice, &c.

BOTANICAL ANALYSIS.

Natural Order. Sarmentaceæ.—L. Menispermaceæ.—J.

Class. XXII. Dioecia. Order Monadelphia.

Genus. Cissampeles.

From σισ, the Greek name of the Ivy, and ἄνθος vine, a plant partaking of the nature of the former in its foliage, and of the latter in its fruit.

Synonyms—Liane à coeur [F.], Die grieswurzel [Ger.], Touwdruif [Dutch] Caspeba [Porl].

THE ESSENTIAL CHARACTERS.

Calyx. Sepals, three-eight in a double series, two-four in each, imbricated in aestivation, hypogynous, deciduous.

Corolla. Petals, one-eight, hypogynous, usually as many as the sepals, rarely wanting or none.
Cissampelos Pareira.

Stamens distinct or monadelphous, equal in number to the Petals and opposite to them, or three or four times as many. Anthers, innate and consisting of four globose lobes.

Ovary, usually solitary, sometimes two-four. Fruit, a drupe, globose-reniform. Seed, solitary, uncinate.

The Secondary Characters.

Cissampelos Dioecious. Male. Sepals, four in a double series. Petals four, united into a cup-shaped corolla, with an entire margin. Stamens, united into slender columns, dilated at the apex, bearing two two-celled anthers, opening horizontally. Cells, placed end to end, and forming a four lobed, four-celled annulus round the top of the column. Female. Calyx of one lateral sepal. Corolla of one petal in front of the sepal. Ovary solitary. Stigmas, three. Drupe, obliquely reniform, but compared, wrinkled round its margin. Seed, solitary, uncinate. Embryo long, terete, enclosed in a fleshy albumen.

Flowers, dioecious. Sterile Flowers. Sepals, four in a double series. Petals four, united into a cup-shaped corolla. Stamens five. Anthers connate. Fertile Flowers. Sepal one, rounded. Petal one, placed before and but half the length of the sepal, truncated, hypogynous. Fruit, a one-seeded berry.

The Specific Characters.

The Artificial Character.

Cissampelos Pareira.

Natural History.

Pareira Brava is a native of South America and the West India Islands. It is well known in Jamaica, where it grows in abundance in the mountainous districts, by the name of Velvet-leaf. It is also spoken of by Ainslie as a native of the East Indies, but it appears that the plant to which he refers is Cissampelos mauritiana, which is closely allied, both in botanical characters and in medicinal qualities to the plant under consideration. This plant was first made known by Maregraf and Piso in 1648, who met with it in Brazil. The name given by them for the root is Caapeba. In 1688, it was sent to Paris by M. Arnelot, the French Ambassador at Portugal. Some difference of opinion exists with regard to the species or varieties affording Pareira root. Linneaus made two species of the plant, founded upon the characters of the leaf. I. Cissampelos Pareira with petioles one to two inches long, villous, cylindrical, with a remarkable curvature at bottom, inserted in many individuals into the leaves at a small distance from the base, so as to make them appear peltate or obicular. II. Cissampelos Caapeba with petioles inserted into the lower edge directly. Poiret by close examination, united them. According to Merat and De Lens, some other species, regarded as distinct, may be merged in it as varieties. The East India species may be different. Caapeba is the name which the root bears in South America.

The Ice-vine, is a climbing shrub, attaining a great size and covering even the tallest trees with its foliage. The root is woody and branching. The stem is round, smooth, or with a closely appressed tomentum. The leaves are large, peltate, subcordate, ovate, articulate, of a dark green, and smooth above and silky pubescent beneath. The flowers are unisexual; the males, with four sepals and four petals, forming a cup-like corolla, with an entire margin. The stamens are united, bearing connate anthers opening horizontally. The female flowers have but a single sepal and petal. The ovary is solitary, surmounted with three stigmas. The fruit is a round or reniform hispid scarlet berry.

Chemical and Medical Properties and Uses.

Pareira was introduced into medical practice by the Portuguese, and at one time was much employed in diseases of the
bladder and kidneys, and even considered as a powerful lithotriptic, its virtues were so highly thought of, that Helvetius declares that calculi of a large size had completely disappeared under its use, and that the operation of lithotomy was no longer required.

The part used in medicine is the root which as found in commerce, is generally in large billets, very tortuous, of a dark color externally, and of a yellowish hue within. The axis is not central, and a section displays a number of concentric layers, traversed by many radiating lines, between which are triangular bundles of woody fibres and ducts. The taste is sweetish, somewhat aromatic, but leaving a bitter and unpleasant impression in the mouth. The smell is very faint. Pareira has been analyzed by Feneulle, (Journ. de Pharm.) It was found to contain a soft resin, yellow bitter principle, brown coloring principle, vegeto-animal matter, fecula, supermalate of lime, nitrate of potash, and some ammoniacal and mineral salts. Wiggers more recently, in 1838, announced the discovery of a new vegetable alkaloid, which he calls Cissampelin, but its properties have not been described. The yellow bitter matter is supposed to be the active principle.

The medical properties are those of a tonic and diuretic, demulcent, and purifying. It has been employed with some advantage in affections of the urino-genital organs, and respectable authority asserts that more good has been effected by this root in cases of this character, than by uva ursi. In chronic inflammation of the bladder, the testimony of Sir B. Brodie, (who was one of the first to resume its use,) is strongly in its favor, he says, "I am satisfied that it has great influence, lessening very materially the secretion of the ropy mucus, which is itself a very great evil, and I believe diminishing the inflammation and irritability of the bladder itself." He recommends it to be given in decoction, to which some tincture of Hyoscyamus may be added. Dr. T. F. Betten, Philadelphia, has also employed it successfully in similar cases.

It is also given in powder, in doses of from half a drachm to a drachm, but the infusion or decoction is a far more eligible mode of administration. An extract and a tincture have been prepared from it. The tincture may be made by maserating one part of the root in five parts of alcohol. Dose, a fluid drachm. The aqueous extract may be given in the dose of from ten to thirty grains.
No. 94.

CAPPANS SPINOSA.

The caper shrub, capes.
CAPPARIDACEÆ.

Capparids.

No. 94.

CAPPARIS SPINOSA.

The Caper shrub—Capers.

Place—Europe.

Quality—Dry, somewhat bitter.

Power—Stimulant, antiscorbutic, aperient.

Use—Hypochondriasis, paralysis.

BOTANICAL ANALYSIS.

Natural Order. Putamineæ.—L. Capparidaceæ.—J.

Class XIII. Polyandria. Order Monogynia.

Genus. CAPPARIS.

From its Arabic name Kabar, from which the Greeks made karparos.

Synonyms—Le caprier [F.], Die Kapernstaude [Ger.], Kappers [Dutch], Cappari [It.], Alcaparro [Sp.], Alcapparra [Port.], Kapersowoy Kust [Russ.]

THE ESSENTIAL CHARACTERS.

Calyx. Sepals four.

Corolla. Petals four, cruciate, unguiculate, hypogynous, more or less unequal.
CAPPARIS SPINOSA.

Stamens. Six—twelve, or some multiple of four, almost perigynous. Torus small, often elongated, bearing a single gland.

Ovary often stipitate, of two united carpels. Styles, united into one. Stigma, discoid.

Fruit, either pod-shaped and dehiscent or fleshy, and indehiscent. Placentae, usually two.

THE SECONDARY CHARACTERS.

THE SPECIFIC CHARACTERS.

Stem trailing, smooth. Leaves ovate, quite smooth. Flowers auxillary, with slender peduncles much longer than the petioles.

THE ARTIFICIAL CHARACTERS.

Class Polyandria. Stamens, twenty or more arising from the receptacle (hypogynous). Order Monogynia. Rocks, walls and cliffs, in the most southern parts of Europe, and in the Levant.

NATURAL HISTORY.

We are happy in having it in our power to give a representation of the Caper shrub, whose blossoms are rarely seen in this country, though its flower buds are in very general use as a pickle, indeed, so great is their consumption that they form a very considerable article of commerce. It is a biennial plant growing wild in some parts of the United States and believed to have been introduced from Europe. It is sometimes found near
CAPPARIS SPINOSA.

gardens and in cultivated fields, and is generally called Mole Plant under the impression that moles avoid the ground where it grows.

The plant grows spontaneously in the more southern parts of Europe, especially in Italy and the Levant; in its wild state it forms a shrub of low growth having numerous spreading spinous branches, somewhat thickly beset with smooth roundish leaves. The blossoms grow alternately on the branches, and when the plant begins to flower, one opens generally every other morning, but so delicate are its parts, that on a hot summer's day it fades before noon. The petals are white. The filaments which are extremely numerous, are white below and of a rich purple color above, in these the beauty of the flower chiefly consists, as in the pestillum does its great singularity. At first view, it would appear that the part so conspicuous in the center of the flower was the style terminated by the stigma in the usual way, but if this part of the flower is traced to a more advanced state, it will be seen that what was supposed the style, is merely an elongation of the flower-stalk, and what was supposed the stigma, is in reality the germen placed on it, crowned with a minute stigma, without any intervening style. This germen swells, turns downward, and ultimately becomes the seed vessel, rarely ripening in northern or cold climates.

The plant is with difficulty preserved by cultivation, for it delights to grow in crevices of rocks, and the joints of old walls and ruins, and always thrives best in a horizontal position. It flowers in May and June, and is usually raised from seeds.

A plant stood near a century against the wall of the garden of Camden House, Kensington, (near London,) it produced many flowers annually, though the young shoots were frequently killed to the stump during the Winter.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The dried bark of the root of Capparis Spinosa was formerly officinal. It is in pieces partially or wholly quilled, about one third of an inch in mean diameter, transversely wrinkled, grayish externally, whitish within, inodorous and of a bitterish, somewhat acid and aromatic taste. It is considered diuretic and was formerly employed in obstructions of the liver and spleen, amenorrhea and chronic rheumatism.

As a pickle, the flower buds of the Caper shrub are in great
CAPPARIS SPINOSA.

esteeem throughout Europe. In Italy the unripe fruit is prepared in the same way as the flower buds; both are highly acrid and burning to the taste. In the isles of the Mediterranean and near Toulon, the flower-buds of the Caper are gathered just before they begin to expand, which forms a daily occupation during six months, when the plants are in a flowering state. As the buds are gathered they are thrown into a cask among as much salt and vinegar as is sufficient to cover them, and as the supply of Capers is increased more vinegar is added. When the Caper season closes, the casks are emptied and the buds sorted according to their size and color, the smallest and greenest being reckoned the best, and put into small casks of fresh vinegar for commerce. They will in this state keep fit for use for five or six years. The best Capers are called Nonpareilles, and the second best Capucines.

Cappares Spenesa contains a milky juice which is extremely acrid, and the whole plant possesses the properties of a drastic purge; but the oil of the seed is the only part used in regular practice. This oil is colorless, inodorous and when recent nearly insipid, but it speedily becomes rancid, and acquires a dangerous acrimony. The oil may be extracted by expression, or by the agency of alcohol or of either. In the first case the bruised seeds are pressed in a canvas or linen bag, and the oil which escapes is purified by decanting it from the whitish flocculent matter which it deposits upon standing, and by subsequent filtration. By the latter process the bruised seeds are digested in alcohol or macerated in ether, and the oil is obtained by filtering and evaporating the solution.

This oil is a powerful purge, operating with much activity in a dose varying from five to ten drops. It was, some years since, much used by certain Italian and French Physicians who did not find it to produce inconvenient irritation of the stomach and bowels. Its want of taste and the smallness of the dose recommended it especially in the cases of infants. It was said to be less acrid and irritating than the Croton oil, over which it also had the advantage of greater cheapness. Some trials which have been made with it on this side of the Atlantic, have not tended to confirm these favorable reports. It was found uncertain in its cathartic effect, and very liable to vomit. (Scattergood, Jour. of the Phil. Col. of Pharm. IV. 124).

It may be given in pill with the crumb of bread, or in emulsion.
Coriandrum Sativum.
Coriander.
UMBELLIFERÆ.

Umbellifers.

No. 95.

CORIANDRUM SATIVUM.

Coriander.

Place—Europe.
Quality—Nauseous.
Power—Carminative, driving away milk.
Use—The seeds in hysteries, tertian ague.

BOTANICAL ANALYSIS.

Natural Order. Umbellatae.—J. Umbelliferae.—J.

Class V. Pentandria. Order Digynia.

Genus. CORIANDRUM.

From the Greek κοριάνδρος, a bug; on account of the smell of the leaves.

Synonymes.—Coriandrë(J.), Koriander Saamen (G.), Koriander (Dutch, Swed. and Dan.), Koriandor (Pol.), Coriandro (Port.), Coriandro (L.), Semilla de Clantro (S.), Cottamillie (Tam.), Mety (Malay), Kezereh (Arab.), Kitnuez (Pers.), D'hanya (H.), D'amyaca (San.)

The Essential Characters.

Calyx adhering to the ovary, entire or five-toothed.

Corolla. Petals, five, usually inflected at the point, imbricate in aestivation.

Stamens. Five, alternate with the petals and inserted with them upon the disk.

Ovary, inferior, two-celled surmounted by the fleshy disk, which bears the stamens and petals. Styles, two distinct, or united at their thickened bases. Stigma, simple.
CORIANDRUM SATIVUM.

Fruit, dry, consisting of two coherent carpels, separating from each other by their faces (commissure,) into two halves (merocarps).

Seeds. Concave, numerous.

THE SECONDARY CHARACTERS.

Coriandrum. Calyx with five conspicuous teeth. Petals, obcordate, inflected at the point, outer ones radiate, bifid. Fruit, globose. Carpels, whering with five depressed, primary ribs, and four secondary, more prominent ones. Seeds concave on the face.

THE SPECIFIC CHARACTERS.

Coriandrum Sativum. Leaves, bipinnate, lower ones with broad cuneate leaflets, upper with linear ones. Carpels hemispherical.

Fruit globose. Calyx and style permanent.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

Coriander is mentioned by Moses (16 Ex. 31.) "And the house of Israel called the name thereof, Manna, and it was like Coriander Seed, white; and the taste of it was like wafers made with honey."

The plant is an annual, a native of Italy and the southern parts of Europe. It is occasionally found wild in some parts of the United States, but is cultivated in gardens owing to the abundant use of it for medicinal purposes. It delights in a sandy loam. It is raised from seeds which may be sown in February or March, when the weather is mild and dry; and the quantity requisite for a bed four feet wide by six in length, to be sown in rows, is half an ounce, and when sown in drills, they may be nine inches apart, and the seed buried half an inch. Where a con-
CORIANDRUM SATIVUM.

Sustained succession is required, small successive monthly sowings will be necessary in Spring and Summer, as the plants in those seasons soon run to seed. There should be also small sowings in the fall, to stand the Winter, under the defence of a frame. The plants are to remain where sown.

The stem is erect, about two feet in height, branching divaricated, round, smooth and obscurely striated. The leaves are compound, the lower ones pinnated, with gashed wedge-shaped, somewhat rounding leaflets and the upper thrice-ternate, with linear-pointed segments. Both the umbels and the umbellules are many rayed, with an involucre of one linear leaf and involucels of three lanceolate narrow leaves, all on one side. The flowers are of a white or reddish color. The calyx consists of five leaves. The Petals are five also, oblong and inflected at the tips, but those of the flowers of the circumference have the outermost petals larger and not inflected. The fruit commonly termed *coriander seeds* (*fructus seu semina coriandri*) is globular, about the size of white pepper, of a grayish yellow color, and is finely or obscurely ribbed. It consists of two hemispherical mericarps, adherent by their concave surfaces. Each mericarp has five primary ridges, which are depressed and wavy, and four secondary ridges more prominent and carinate. The channels are without vitæ, but the commissure has two. This form of the fruit distinguishes *Coriandrum Sativum*, *coriander*, from all the other species of Umbelliferae.

The plant flowers in June, and ripens its seed in August.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

The dried seeds of the *Coriandrum Sativum* have a grateful, aromatic odor, and a moderately warm, pungent taste, qualities which depend on an essential oil, that can be obtained separately by the distillation of the seeds with water. Their active principles are completely extracted by alcohol, but only partially by water. This oil (*Oleum Coriandri*) is yellowish, smells strongly and pretty agreeably of the Coriander, and is the source of the odor, taste and medicinal properties of the fruit, which, like the other carminative umbelliferous fruits are aromatic and stimulant. The whole plant when green has an abominably fetid odor if bruised, which extends even to the fruit. It is cultivated in private gardens chiefly for the tender leaves which are used in soups and salads. On a large scale it is cultivated for the seed.
which is extensively used by confectioners, druggists and distillers, in large quantities.

The seeds are sometimes used in flatulencies, but principally to cover the unpleasant taste, and correct the griping quality of some cathartics.

Dr. Cullen considered coriander as more powerfully correcting the odor and taste of Senna than any other aromatic; and hence it was formerly a constituent of the compound infusion of Senna, though now ginger is substituted for it. It is only employed in medicine as an adjuvant or corrigent. It is a constituent of the *confectio senna*, which when properly prepared is a mild and pleasant purgative, and well adapted for those who are afflicted with habitual constiveness.

Coriandrum Sativum is carminative, and therefore the following observations respecting medicines of that class are introduced for the use of the general reader. Carminatives are those medicines which usually dispel flatulency of the stomach and bowels by stimulating the inner coat of these organs. They in general produce only temporary relief, for if the diseased condition of the alimentary canal be not removed by appropriate remedies it will very speedily become again distended with flatus. The articles generally employed as carminatives are infusions or tinctures of the aromatic seeds and vegetables. The principal carminatives are ginger, cardamon, anise and caraway seeds; several of the essential oils, as those of peppermint, anise, coriander, and juniper. Ardent spirits and especially aromatic tinctures. The use of these articles is decidedly injurious in every instance in which the stomach or intestines are in the least degree inflamed, or when their sensibility is morbidly increased. They are however very favorite prescriptions with nurses and mothers, to allay the gripings with which young children are so frequently afflicted, and under these circumstances a great deal of mischief is caused by their indiscreet administration. Wholesome food, cleanliness of person, protection from cold and damp, and sufficient exercise will most generally prevent a flatulent state of the bowels of infants; when, however, it depends upon the disease of these parts carminatives will seldom do much good but will often increase the sufferings of the little patient.
No 90.

COCULUS PALMATUS.
The Colombo Plant. Columbo.
MENISPERMACEÆ.

Menispermads.

No 96.

COCCULUS PALMATUS.

Columba Plant. Columbo.

Place—Africa.
Quality—Bitter.
Power—Antiseptic, tonic.
Use—Indigestion, diarrhoea, fevers, cholera.

BOTANICAL ANALYSIS.

Natural Order. Sarmentaceæ.—L. Menispermaceæ.—J.

Class XXII. Dioecia. Order Hexandria.

Genus COCCULUS.

From Coccus, the name of the well known dyers' insect, and has been applied to this
Genus on account of the resemblance which has been found to exist between that
insect and the scarlet berries of the plant.

Synonymes.—Colombo [F.], Kolumbowurzel [G.], Columba [L], Raizade Colombo
[Sp.], Kalumbo [Port.], Kalumb [Mozambique], Columbo vaye. [Tun.]

The Essential Characters.

Calyx. Sepals, three-eight in a double series, two-four in each, imbricated in aestivation, hypogynous, deciduous.
Corolla. Petals, one-eight, hypogynous, usually as many as the
sepalas, rarely wanting or none.
COCCULUS PALMATUS.

Stamens distinct or monadelphous, equal in number to the Petals and opposite to them, or three or four times as many. *Anthers*, innate and consisting of four globose lobes.

Ovary, usually solitary, sometimes two-four

Fruit, a drupe, globose-reniform.

Seeds, lunate and compressed

THE SECONDARY CHARACTERS.

COCCULUS. Flowers unisexual, dioecious. *Calyx* of twelve sepals, in four series, with two three or more close pressed bracteoles.

Males. *Stamens* six, or rarely three opposite to the inner sepals, distinct. *Anthers* two-celled, terminal, dehiscing, vertically. *Filaments*, either filiform or thickened at the apex. Females, *Ovaries*, three, six or numerous. *Drupes* one to six or numerous, one-celled, one-seeded. *Peduncles* axillary or rarely lateral.

Sepals and petals ternate usually in two, rarely in three rows. *Stamens*, six distinct, opposite the petals. *Drupes* barbed, one to six, generally oblique, reniform, somewhat compressed, one-seeded. *Calyx* distant.

THE SPECIFIC CHARACTERS.

Leaves cordate, five—seven lobed. Lobes entire, acuminate somewhat hairy on both sides. *Stem* and *Germ* with glandular hairs.

THE ARTIFICIAL CHARACTERS.

NATURAL HISTORY.

This plant is a native of the Mozambique, west of Africa. Cibo is mentioned as a locality of it. It there grows spontaneously, and is not cultivated by the natives. The manner of preparing the root is to remove it from the earth during the dry season, which is in March, and after washing it to cut it into pieces, usually horizontal, and then dry them in the shade. The
COCCULUS PALMATUS.

offsets are selected in preference. The pieces are marked by a thick ring on the outside, corresponding to the dense vertical substance, contrasting with the contracted interior, which is formed of more spongy parenchyma. The surface is marked by concentric rings.

Redi, in 1677, first mentioned the properties of the root of the Columba. It was not however introduced into Europe for a long time after, and then little was known of its origin. Commerson, in 1770, procured some specimens from the garden of Mr. Poivre, of the Isle of France, and sent them to Europe. From these Lamarik has given his description of the plant, under the name of Menispermum palmatum. Mr. Ferton, a resident of Madras, obtained a living specimen of the plant in 1805, and Mr. Berry in the Asiatic Researches figured and described it. In 1830 Sir Wm. J. Hooker published a complete description both of the male and female plants in the Botanic Magazine. This was made from the drawings sent to England by Mr. Telfair of Mauritius who obtained living roots from Captain Owen, procured by him when on the survey of the eastern coast of Africa. From the name Colombo root it was supposed to be the product of Ceylon, but this is not the case as has been stated by Shurberg and Dr. Rajuct. The name by which it is known in India is Kalumb. Columba is brought into the market in bales, and sometimes in cases, and as it constitutes an article of traffic in the East it may be bought in most of the great marts of that portion of the world. Usually Bombay, Madras or Calcutta, are the indirect sources of it. The pieces are frequently much perforated evidently by worms and not as has been supposed by stringing to facilitate its drying. Those pieces which have the fewest worm-holes, the brightest color, and are solid and heavy, are the best. It is said that the root of white bryony, tinged yellow with the tincture of columba has been fradulently substituted for this root.

CHEMICAL AND MEDICAL PROPERTIES AND USES.

Columba root has a very slight aromatic odor and a bitter taste. It breaks with a starchy fracture and is easily pulverized. Water at 212° takes up one-third of its weight, and the infusion has all the sensible qualities of the root. These are also extracted by alcohol, but proof spirit is the best menstruum. The infusion is not altered by solutions of sulphate of iron, nitrate of silver,
muriate of mercury, and tartarized antimony; but a copious precipitate is produced by the infusion of galls, and yellow cinchona bark, by asacetate and superacetate of lead, oxymuriate of mercury and lime-water. Hence Columba root was erroneously supposed to contain cinchonia. M. Planche found it to contain a large proportion of a peculiar animal substance; a yellow, bitter, resinous matter, and one-third of its weight of starch. By repeated distillation, he also obtained a volatile oil, and from the residue malate of lime, and sulphate of lime. By treating columba root with alcohol of 0.835, then reducing the tincture by distillation to one-third, allowing the residue to stand until crystals form in it, and afterwards purifying these, Mr. Wittstock of Berlin procured a new salt, to which he gave the name of columbina, and which he supposes to be the active principle of columba root. It is inodorous, extremely bitter, neither acid nor alkaline, and scarcely soluble in water or in alcohol. The acetic acid is its proper menstruum.

Columba root is a useful antiseptic and tonic. It is frequently employed with much advantage in diarrhoeas arising from a redundant secretion of bile and in bilious remittent fever, and cholera, in which it generally checks the vomiting. It also allays the nausea and vomiting which accompany pregnancy, and according to Percival, it is equally serviceable in stopping the severe diarrhoea and vomiting which sometimes attend dentition. Denman found it more useful than cinchona in the low stage of puerperal fever. As a tonic, unaccompanied with astringency, and possessing little stimulus, it has been recommended in phthisis and hectic fever, to allay irritability and strengthen the digestive organs, and in dyspepsia. It may be given combined with aromatics, orange-peel, opiates and alkaline or neutral salts as circumstances may indicate or require. The powder in combination with rhubarb and sulphate of potassa is found exceedingly serviceable in mesenteric fever. An ointment made with the powder has been used in tinea capitis, and to destroy vermin in the hair. Rubbed up with lard in the proportion of ten grains to the ounce, it usually cures tinea capitis in less than a month.

It is given in powder, or in infusion or tincture. When boiled in water the starch is dissolved, and a turbid thick solution is produced, a decoction is therefore objectionable. The dose of the powdered root is from fifteen grains to half a drachm, repeated three or four times a day.