Facility Improvement & Data Optimization (FIDO) Efforts at the NASA NTF

Eric L. Walker & Roman Paryz

Presented at the
AIAA SciTech Conference
Aerospace Sciences Meeting (ASM)
5 - 9 January 2015
Kissimmee, FL

Subject Category: Test Facilities, Transonic Wind Tunnel
Key Words: Modifications / Upgrades
What is FIDO

• A concentrated, multi-year effort to improve NTF’s overall capabilities

• An institutionalization of lessons learned from the STARBUKS project (Subsonic Transonic Applied Refinements By Using Key Strategies)

• This multi-million dollar effort is making improvements to our
 – Accuracy and Validation
 • Improved repeatability / data quality for results that can be trusted
 – Productivity
 • Completing required testing in a timely manner
 – Reliability
 • Keep the facility operational without interruption
STARBUKS Summary

Accuracy & Validation
- Data Acquisition System (Test SLATE)
- Mach Measurement System
- Facility Automation System
- Cooling Coil Trailing Edge Fairings
- Fixed Fairing Extension
- Alt. Probes Locations (RTD on Cooling Coil)
- Test Section Visibility
- Balance Calibrations

Productivity
- Cryogenic Active Damper
- Balance Limit Alarm (BLAMS) Upgrade
- Inlet Guide Vane (IGV) ΔT Mitigation
- Continuous Pitch

Reliability
- High Pressure Air Reducing Station
- Drive Coupling
- IGV Hydraulic Pipe Repair

Phase I Testing
- Check Std Test 214
- CRM Test 215

Phase II Testing
- Flow Calibration Test 217
- CRM Data Flow Quality Test 218

See Paryz AIAA 2014-1481
FIDO Improvements Roadmap

Accuracy & Validation
- Tunnel configuration selection
- Mach stability ±0.0005
- Conditional sampling (off-line)
- Validate RTD array on cooling coil

Productivity
- Mach control methodology
- 2nd throat actuation
- Conditional sampling (on-line, real-time)
- Increase access housing heating
- Optimized nitrogen injection
- Continuous sweep

Reliability
- Liquid nitrogen pump health monitoring
- Minimize nitrogen system hammering

Phase I Testing
- Check Std Test 219
- Flow Survey Rake Test 216A
- Completed

Phase II Testing
- Calibration Extension Test 220
- Turbulence Survey Rake Test 216B
- CRM Test 221

CRM – Common Research Model
FIDO Projects and Tests

• 5 Major Projects
 – Test Section Movables (2nd Throat)
 ▪ Tunnel configuration selection
 ▪ Mach control methodology
 ▪ 2nd throat actuation
 – Conditional Sampling
 ▪ Off-line [Complete]
 ▪ On-line real-time
 – Increasing Access Housing Heating
 – Proportional Liquid Nitrogen (LN2) Injection
 ▪ Optimized nitrogen injection
 ▪ Minimize nitrogen system hammering
 – LN2 Pump Health Monitoring

• 5 Experimental Entries
 – Test 219 Check standard [Pathfinder]
 ▪ Mach control methodology
 ▪ Continuous sweep optimization
 – Test 216A&B Flow survey rake
 ▪ Validate RTD array
 ▪ Verify turbulence reduction from STARBUKS [Deferred due to budget]
 – Test 220 Calibration extension
 ▪ Mach control methodology
 – Test 221 CRM validation
 ▪ Validation of combined system upgrades
30 Years of High Reynolds Number RDT&E

The Highest Reynolds Number Transonic Facility Operating in Air

The Highest Reynolds Number Transonic Facility Operating Cryogenically

<table>
<thead>
<tr>
<th>Test Section</th>
<th>8.2 x 8.2 x 25 Feet (2.5 x 2.5 x 7.6 meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>14.7 to 133 psia; 1 to 9.0 atm.; 1.01 to 9.1 bar</td>
</tr>
<tr>
<td>Air Operations</td>
<td>N₂ Operations</td>
</tr>
<tr>
<td>Mach No.</td>
<td>0.2 to 1.05</td>
</tr>
<tr>
<td>Reynolds No. Max</td>
<td>20x10^6 / ft (65x10^6 / m)</td>
</tr>
<tr>
<td>Temperature</td>
<td>90° to 150°F (32° to 65°C)</td>
</tr>
</tbody>
</table>
Test Section Movables (2nd Throat)
Accuracy & Validation, Productivity

- **Improve Mach stability (physical)**
 - Target ±0.0005 Mach number for transonic conditions
 - Part of original NTF design for “superior Mach control”
- **Project components**
 - Develop a robust instrumentation package to determine wall position
 - Develop a remote wedge system for the fixed fairing to minimize support system induced dynamics
- **Planned to be operational in Summer 2015**
- **Requires calibration extension**

See Chan AIAA 2015-#### and Jones AIAA 2015-####
Conditional Sampling
Accuracy & Validation, Productivity

- Improve data quality
 - Reject data samples that do not meet requirements

- Off-line: available
 - Performance penalty due to longer data samples required
 - Need ~2 seconds of valid data
 - May need to acquire 10-12 sec

- On-line: in development
 - Stop acquiring data when samples meet specified criteria
 - Alleviates most of performance penalty

\[C_D \pm 0.0001 \]

\[\text{Avg 1st 2 Sec} \]
Increasing Access Housing Heating Productivity

• **Target**
 – 50% reduction in model access time

• **Current system**
 – 20 kW convection heater
 – 2 torch heaters (convection)
 – 2 IR lamps for sting base

• **Approach**
 – Replace torch heaters with medium-wave (mw) IR heaters
 – 4 mwIR heaters with independent control using an 4 optical pyrometers for surface temperature measurement
 – New articulating arm structure
Proportional Liquid Nitrogen (LN$_2$) Injection
Accuracy & Validation, Reliability

• **Current system**
 – 336 injection nozzles controlled by 12 binary (butterfly) valves
 – 8 programmed injection patterns

• **Proposed changes**
 – Replace binary valves with proportional (ball) valves
 – Update the automation hardware
 – Revise control system
 – Incorporate RTD array for fine temperature control

• **Proposed benefits**
 – Optimized LN$_2$ injection
 – Minimized LN$_2$ system dynamics
 – Improved reliability of LN$_2$ system

• **Planned to be operational in Summer 2015**
Cooling Coil RTD Array

- Double dual total temperature probes (RTD) have been installed at 9 locations in 21ft x 21ft pattern
 - 36 temperature sensors
 - 18 for data
 - 18 for control
 - Represents 5ft wing span in the test section
LN2 Pump Health Monitoring
Reliability

• **Goal**
 – Make LN$_2$ system more robust
 – Limit pump trips
 – Measure/predict pump health

• **Current system**
 – Monitoring of 12 accelerometers
 – 6 internal/6 externally mounted

• **Planned changes**
 – Motor current based monitoring of the two largest pumps
 – Consolidate accelerometers and current signals
 – Assess two solutions for trending and analysis
 ▪ Simple spectral analysis with peak frequency recording
 ▪ Data recorder with high level analysis capability
Check Standard Model (PF1) – Test 219
Accuracy & Validation, Productivity

• **Purpose**
 – Verify Mach stability for the Mach 0.90 choke configuration of 2nd throat used for CRM
 ▪ Determine whether model size affects tunnel choke (PF1 is 70% of CRM in size)
 ▪ Determine the extent of Mach variation benefit as a function of Mach number
 – Verify control and data system updates
 • Conditional sampling
 • Continuous pitch/sweep optimization
 • Temporal alignment of balance and reference conditions from new Mach Measurement Sys.
 – Gather fluctuating pressure data on test section walls, arc sector, and high speed diffuser to check noise propagation

• **Test Conditions**
 – Mach number: $0.70 \leq M \leq 0.88$
 – Dynamic Pressure: $766 \text{ psf} \leq Q \leq 1040 \text{ psf}$
 – Reynolds number (c): $2.5 \times 10^6 \leq \text{Re} \leq 2.8 \times 10^6$
 – Total Pressure: 21.5 psi
 – Temperature: +120° F
 – Angle-of-Attack: $-2^\circ \leq \alpha \leq +4.5^\circ$

See Chan AIAA 2015-#### and Jones AIAA 2015-####
Rake Test 216 A&B
Accuracy & Validation

• **Purpose**
 – Verify flow reference measurements
 – Evaluate circuit flow line changes on reference conditions and their uniformity
 ▪ Arc-sector fixed fairing extension
 ▪ Cooling coil trailing edge fairings
 – Validate cooling coil RTD array
 – Document improvements to test section flow quality [*T216B only*]
 – Understand flow dynamics

• **Sensors used**
 – Unsteady pressure sensors
 – Hot-wire sensors [*T216B only*]
 – Resistive Temperature Devices
 – Total pressure probes

• **Results**
 – Reference conditions verified
 – RTD array validated
 – Continuous sweep used successfully
 – Dynamic pressure fluctuations documented by Jones AIAA 2015-####

• **Test 216B deferred due to budget**
Purpose:

- Extend centerline Mach and buoyancy calibration for use of the 2nd throat
 - Previous testing demonstrated requirement
 - Planned as a correction to the existing calibration
- Planned for late-Summer 2015
Planed full system demonstration of FIDO projects: Fall 2015
Summary

• Several upgrade projects are in progress at the NASA LaRC National Transonic Facility (NTF) to incorporate lessons learned from the STARBUKS project.

• This multi-year effort is enhancing NTF’s overall capabilities by improving the Accuracy and Validation, Productivity, and Reliability capabilities at the NTF.
Questions?